975 resultados para STRONTIUM
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nut, calculated using Rietveld refinement, is in a good agreement with results of HRTEM. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pristine, W and Mn 1% doped Ba(0.6)Sr(0.4)TiO(3) epitaxial thin films grown on the LaAlO(3) substrate were deposited by pulsed laser deposition (PLD). Dielectric and ferroelectric properties were determined by the capacitance measurements and X-ray diffraction was used to determine both residual elastic strains and defect-related inhomogeneous strains-by analyzing diffraction line shifts and line broadening, respectively. We found that both elastic and inhomogeneous strains are affected by doping. This strain correlates with the change in Curie-Weiss temperature and can qualitatively explain changes in dielectric loss. To explain the experimental findings, we model the dielectric and ferroelectric properties of interest in the framework of the Landau-Ginzburg-Devonshire thermodynamic theory. As expected, an, elastic-strain contribution due to the epilayer-substrate misfit has an important influence on the free-energy. However, additional terms that correspond to the defect-related inhomogeneous strain had to be introduced to fully explain the measurements.
Resumo:
Theoretical data using ab initio perturbed ion calculation were compared with ferroelectric and piezoelectric experimental data of strontium doped PZT. Various concentrations of SrO in PZT at constant temperature and sintering time were carried out. Experimental results, such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion dislocation and the lattice interaction energy which show that strontium increment in PZT alter the energies and increase the values of piezoelectric and ferroelectric variables. Calculations of lattice energy of the rhombohedral phase show that a phase non-stability is coincident with increasing experimental values of the P-R, E-C and Kp. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
As an important step in the nuclear transfer (NT) procedure, we evaluated the effect of three different treatments for oocyte activation on the in vitro and in vivo developmental capacity of bovine reconstructed embryos: (1) strontium, which has been successfully used in mice but not yet tested in cattle; (2) ionomycin and 6-dimethylammopurine (6-DMAP), a standard treatment used in cattle; (3) ionomycin and strontium, in place of 6-DMAP. As regards NT blastocyst development, no difference was observed when strontium (20.1%) or ionomycin/6-DMAP (14.4%) were used. However, when 6-DMAP was substituted by strontium (3), the blastocyst rate (34.8%) was superior to that in the other activation groups (p < 0.05). Results of in vivo development showed the possibility of pregnancies when NT embryos activated in strontium were transferred to recipient cows (16.6%). A live female calf was obtained when ionomycin/strontium were used, but it died 30 days after birth. Our findings show that strontium can be used as an activation agent in bovine cloning procedures and that activation with a combination of strontium and ionomycin increased the in vitro developmental capacity of reconstructed embryos. This is the first report of a calf produced by adult somatic cell NT in Latin America.
Resumo:
Strontium efficiently activates mouse oocytes, however, there is limited information on its use in cattle. Thus, the objective of this study was to establish a suitable protocol for activating bovine oocyte with strontium. For pronuclear development, the absence of calcium and magnesium in the activation medium (TALP) with 10 and 50mM strontium (34.4 and 53.1%, respectively) was superior to the complete TALP (6.5 and 19.4%, respectively). In all activation media, better results were observed with 25 and 50 mM strontium (21.9-53.1 and 19.4-53.1%, respectively). Incubation for 4 h promoted similar results in all strontium concentrations. However, strontium at 15, 20, and 25 mM for 6 and 8 h (40.7, 46.7, and 48.3%, and 29.3, 48.3, and 40.7%, respectively) were superior to control (15.5 and 10%, respectively). After in vitro maturation for 26 h, strontium (S; 20 mM in Ca2+ and Mg2+-free TALP for 6 h), ionomycin + strontium (IS), and strontium + ionomycin (SI) (60, 63.3, and 65%, respectively) were similar in pronuclear development and superior to ionomycin (I; 5 mu M for 5 min; 36.7%). In treatments S and I, only 1 PN zygotes were observed. In treatment S, most of them had 1 and 2 PB (35.7 and 60.7%, respectively), and in treatment I, 0, 1, and 2 PB (14.3, 57.1, and 28.6%, respectively). Most of the zygotes in treatment IS and SI were 1 PN 2 PB (77.4 and 61.6%, respectively). The number of oocytes with clusters of cortical granules was similar in all treated groups (11-29%). Cortical granule exocytosis in treatment IS (68%) was similar to S (54%) and superior to 1, SI, and control (27, 45, and 5.0%, respectively). Cleavage and blastocyst rates were similar for S, I, IS, and SI treatments (61.7-76.7, and 8.3-13.3%, respectively) and the same was observed for ICM, TE, and total cell number, and ICM/total cell ratio (22-25, 64-69, and 86-95, and 0.26-0.27). In conclusion, strontium may be efficiently applied for bovine oocyte activation at 20 mM in Ca2+-and Mg2+-free TALP medium for 6 h.
Resumo:
Undoped and Eu3+ doped monohydrate strontium oxalate samples were precipitated under ultrasound and conventional stirring and were heated at different temperatures. All samples were characterized by X-ray powder diffraction (XDR), infrared spectra (IR) and scanning electron microscopy (SEM). Monohydrate, dehydrate oxalates and carbonate particles are ellipsoids indicating a topotatic process. Particle size decrease is observed when ultrasound stirring and europium. doping are used and rehydration of strontium oxalate results in uniform hexagonal particle shape. An oxide and carbonate mixture is obtained from oxalates treated at 1050 degreesC and its suspension in water undergoes incomplete hydrolysis. The products from this incomplete hydrolysis present dendrite shape particles only when the former is precipitated under ultrasound stirring. In this process, surface energy is important for particle dispersion and ultrasound supplies activation energy to oxalate precursor. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Pure barium strontium titanate powder, with Ba/Sr ratio of 80/20 was prepared by the polymeric precursor method (also called Pechini process). The powder was obtained after a calcination at 800 degreesC for 8 h and characterized by XRD, IR, BET and SEM. The requirements to avoid barium carbonate as a secondary phase are presented and discussed in detail. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Thin films of barium and strontium titanate (BST), synthesized by the polymeric precursor solution and spin coated on [Pt (140nm)/Ti (10 nM)/SiO2(1000 nm)/Si] substrates were found to be photoluminescent at room temperature when heat treated below 973 K, i.e. before their crystallization. First principles quantum mechanical techniques, based on density functional theory (DFT) were employed to study the electronic structure of two periodic models: one is standing for the crystalline BST thin film and the other one for the structurally disordered thin film. The aim is to compare the photoluminescence (PL) spectra of the crystalline and disordered thin films with their UV-vis spectra and with their computed electronic structures. The calculations show that new localized states are created inside the band gap of the crystalline model, as predicted by the UV-vis spectra. The study of the charge repartition in the structure before and after deformation of the periodic model shows that a charge gradient appears among the titanate clusters. This charge gradient, together with the new localized levels, gives favorable conditions for the trapping of holes and electrons in the structure, and thus to a radiative recombination process. Our models are not only consistent with the experimental data, they also allow to explain the relations between structural disorder and photoluminescence at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.