745 resultados para SPORTS-MEDICINE
Resumo:
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Resumo:
In view of the upcoming Sydney Olympics and several recent reports describing the experience at the Atlantic Olympics, we report the findings of the only Australian study which, to our knowledge, measured the impact of a large-scale sporting event on a public hospital. The study also provided an avenue for increased surveillance for communicable diseases. We prospectively assessed the utilisation of the Royal Darwin Hospital (RDH) by visiting athletes, officials and spectators during the 1997 Arafura Games, a biannual, seven-day international sporting event which attracts some 4,000 athletes and their supporters from across Australia, South-East Asia and the Pacific. The RDH Emergency Department (ED) is the only free, 24- hour medical facility in Darwin and no additional staff or resources were provided during the Games period. Official facilities included two privately operated sports medicine clinics for the sole use of athletes with sporting injuries during prescribed hours in the week of competition, and the presence of St John Ambulance at venues...
Resumo:
BACKGROUND: Ankle joint equinus, or restricted dorsiflexion range of motion (ROM), has been linked to a range of pathologies of relevance to clinical practitioners. This systematic review and meta-analysis investigated the effects of conservative interventions on ankle joint ROM in healthy individuals and athletic populations. METHODS: Keyword searches of Embase Medline Cochrane and CINAHL databases were performed with the final search being run in August 2013. Studies were eligible for inclusion if they assessed the effect of a non-surgical intervention on ankle joint dorsiflexion in healthy populations. Studies were quality rated using a standard quality assessment scale. Standardised mean differences (SMDs) and 95% confidence intervals (CIs) were calculated and results were pooled where study methods were homogenous. RESULTS: Twenty-three studies met eligibility criteria, with a total of 734 study participants. Results suggest that there is some evidence to support the efficacy of static stretching alone (SMDs: range 0.70 to 1.69) and static stretching in combination with ultrasound (SMDs: range 0.91 to 0.95), diathermy (SMD 1.12), diathermy and ice (SMD 1.16), heel raise exercises (SMDs: range 0.70 to 0.77), superficial moist heat (SMDs: range 0.65 to 0.84) and warm up (SMD 0.87) in improving ankle joint dorsiflexion ROM. CONCLUSIONS: Some evidence exists to support the efficacy of stretching alone and stretching in combination with other therapies in increasing ankle joint ROM in healthy individuals. There is a paucity of quality evidence to support the efficacy of other non-surgical interventions, thus further research in this area is warranted.
Resumo:
Background Commercially available instrumented treadmill systems that provide continuous measures of temporospatial gait parameters have recently become available for clinical gait analysis. This study evaluated the level of agreement between temporospatial gait parameters derived from a new instrumented treadmill, which incorporated a capacitance-based pressure array, with those measured by a conventional instrumented walkway (criterion standard). Methods Temporospatial gait parameters were estimated from 39 healthy adults while walking over an instrumented walkway (GAITRite®) and instrumented treadmill system (Zebris) at matched speed. Differences in temporospatial parameters derived from the two systems were evaluated using repeated measures ANOVA models. Pearson-product-moment correlations were used to investigate relationships between variables measured by each system. Agreement was assessed by calculating the bias and 95% limits of agreement. Results All temporospatial parameters measured via the instrumented walkway were significantly different from those obtained from the instrumented treadmill (P < .01). Temporospatial parameters derived from the two systems were highly correlated (r, 0.79–0.95). The 95% limits of agreement for temporal parameters were typically less than ±2% of gait cycle duration. However, 95% limits of agreement for spatial measures were as much as ±5 cm. Conclusions Differences in temporospatial parameters between systems were small but statistically significant and of similar magnitude to changes reported between shod and unshod gait in healthy young adults. Temporospatial parameters derived from an instrumented treadmill, therefore, are not representative of those obtained from an instrumented walkway and should not be interpreted with reference to literature on overground walking.
Resumo:
Background Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within– and between–day repeatability of spatial, temporal and vertical ground reaction forces measured by a treadmill system instrumented with a capacitance–based pressure platform. Methods Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM–THM–S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30–second capture period, equating to an average of 52 ± 5 steps of steady–state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between–session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. Results There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P < .01). The minimum change that could be detected with 95% confidence ranged between 3% and 17% for temporal parameters, 14% and 33% for spatial parameters, and 4% and 20% for kinetic parameters between days. Within–day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. Conclusions The limits of agreement in spatial parameters and ground reaction forces for the treadmill system encompass previously reported changes with neuromuscular pathology and footwear interventions. These findings provide clinicians and researchers with an indication of the repeatability and sensitivity of the Zebris treadmill system to detect changes in common spatiotemporal gait parameters and vertical ground reaction forces.
Resumo:
The relationship between coronal knee laxity and the restraining properties of the collateral ligaments remains unknown. This study investigated correlations between the structural properties of the collateral ligaments and stress angles used in computer-assisted total knee arthroplasty (TKA), measured with an optically based navigation system. Ten fresh-frozen cadaveric knees (mean age: 81 ± 11 years) were dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femur and tibia were rigidly secured within a test system which permitted kinematic registration of the knee using a commercially available image-free navigation system. Frontal plane knee alignment and varus-valgus stress angles were acquired. The force applied during varus-valgus testing was quantified. Medial and lateral bone-collateral ligament-bone specimens were then prepared, mounted within a uni-axial materials testing machine, and extended to failure. Force and displacement data were used to calculate the principal structural properties of the ligaments. The mean varus laxity was 4 ± 1° and the mean valgus laxity was 4 ± 2°. The corresponding mean manual force applied was 10 ± 3 N and 11 ± 4 N, respectively. While measures of knee laxity were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments. These findings suggest that clinicians may perceive a rate of change of ligament stiffness as the end-point during assessment of collateral knee laxity.
Resumo:
Background. This study evaluated the time course of recovery of transverse strain in the Achilles and patellar tendons following a bout of resistance exercise. Methods. Seventeen healthy adults underwent sonographic examination of the right patellar (n = 9) or Achilles (n = 8) tendons immediately prior to and following 90 repetitions of weight–bearing exercise. Quadriceps and gastrocnemius exercise were performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the tendon enthesis and transverse strain was repeatedly monitored over a 24 hour recovery period. Results. Resistance exercise resulted in an immediate decrease in Achilles (t7 = 10.6, P<.01) and patellar (t8 = 8.9, P<.01) tendon thickness, resulting in an average transverse strain of 0.14 ± 0.04 and 0.18 ± 0.05. While the average strain was not significantly different between tendons, older age was associated with a reduced transverse strain response (r=0.63, P<.01). Recovery of transverse strain, in contrast, was prolonged compared with the duration of loading and exponential in nature. The mean primary recovery time was not significantly different between Achilles (6.5 ± 3.2 hours) and patellar (7.1 ± 3.2 hours) tendons and body weight accounted for 62% and 64% of the variation in recovery time, respectively. Discussion. Despite structural and biochemical differences between the Achilles and patellar tendons [1], the mechanisms underlying transverse creep–recovery in vivo appear similar and are highly time dependent. Primary recovery required about 7 hours in healthy tendons, with full recovery requiring up to 24 hours. These in vivo recovery times are similar to those reported for axial creep recovery of the vertebral disc in vitro [2], and may be used clinically to guide physical activity to rest ratios in healthy adults. Optimal ratios for high–stress tendons in clinical populations, however, remain unknown and require further attention in light of the knowledge gained in this study.
Resumo:
Objectives: Experiential knowledge of elite athletes and coaches was investigated to reveal insights on expertise acquisition in cricket fast bowling. Design: Twenty-one past or present elite cricket fast bowlers and coaches of national or international level were interviewed using an in-depth, open-ended, semi-structured approach. Methods: Participants were asked about specific factors which they believed were markers of fast bowling expertise potential. Of specific interest was the relative importance of each potential component of fast bowling expertise and how components interacted or developed over time. Results: The importance of intrinsic motivation early in development was highlighted, along with physical, psychological and technical attributes. Results supported a multiplicative and interactive complex systems model of talent development in fast bowling, in which component weightings were varied due to individual differences in potential experts. Dropout rates in potential experts were attributed to misconceived current talent identification programmes and coaching practices, early maturation and physical attributes, injuries and lack of key psychological attributes and skills. Conclusions: Data are consistent with a dynamical systems model of expertise acquisition in fast bowling, with numerous trajectories available for talent development. Further work is needed to relate experiential and theoretical knowledge on expertise in other sports.
Resumo:
Cryotherapy is currently used in various clinical, rehabilitative, and sporting settings. However, very little is known regarding the impact of cooling on the microcirculatory response. Objectives: The present study sought to examine the influence of two commonly employed modalities of cryotherapy, whole body cryotherapy (WBC; -110°C) and cold water immersion(CWI; 8±1°C), on skin microcirculation in the mid- thigh region. Methods: The skin area examined was a 3 × 3 cm located between the most anterior aspect of the inguinal fold and the patella. Following 10 minutes of rest, 5 healthy, active males were exposed to either WBC for 3 minutes or CWI for 5 minutes in a randomised order. Volunteers lay supine for five minutes after treatment, in order to monitor the variation of red blood cell (RBC) concentration in the region of interest for a duration of 40 minutes. Microcirculation response was assessed using a non-invasive, portable instrument known as a Tissue Viability imaging system. After a minimum of seven days, the protocol was repeated. Subjective assessment of the volunteer’s thermal comfort and thermal sensation was also recorded. Results: RBC was altered following exposure to both WBC and CWI but appeared to stabilise approximately 35 minutes after treatments. Both WBC and CWI affected thermal sensation (p < 0.05); however no betweengroup differences in thermal comfort or sensation were recorded (p > 0.05). Conclusions: As both WBC and CWI altered RBC, further study is necessary to examine the mechanism for this alteration during whole body cooling.
Resumo:
In many interventions that are based on an exercise program intended to induce weight loss, the mean weight loss observed is modest and sometimes far less than what the individual expected. The individual responses are also widely variable, with some individuals losing a substantial amount of weight, others maintaining weight, and a few actually gaining weight. The media have focused on the subpopulation that loses little weight, contributing to a public perception that exercise has limited utility to cause weight loss. The purpose of the symposium was to present recent, novel data that help explain how compensatory behaviors contribute to a wide discrepancy in exercise-induced weight loss. The presentations provide evidence that some individuals adopt compensatory behaviors, that is, increased energy intake and/or reduced activity, that offset the exercise energy expenditure and limit weight loss. The challenge for both scientists and clinicians is to develop effective tools to identify which individuals are susceptible to such behaviors and to develop strategies to minimize their effect.
Resumo:
It is often reported that females lose less body weight than males do in response to exercise. These differences are suggested to be a result of females exhibiting a stronger defense of body fat and a greater compensatory appetite response to exercise than males do. Purpose This study aimed to compare the effect of a 12-wk supervised exercise program on body weight, body composition, appetite, and energy intake in males and females. Methods A total of 107 overweight and obese adults (males = 35, premenopausal females = 72, BMI = 31.4 ± 4.2 kg·m−2, age = 40.9 ± 9.2 yr) completed a supervised 12-wk exercise program expending approximately 10.5 MJ·wk−1 at 70% HRmax. Body composition, energy intake, appetite ratings, RMR, and cardiovascular fitness were measured at weeks 0 and 12. Results The 12-wk exercise program led to significant reductions in body mass (males [M] = −3.03 ± 3.4 kg and females [F] = −2.28 ± 3.1 kg), fat mass (M = −3.14 ± 3.7 kg and F = −3.01 ± 3.0 kg), and percent body fat (M = −2.45% ± 3.3% and F = −2.45% ± 2.2%; all P < 0.0001), but there were no sex-based differences (P > 0.05). There were no significant changes in daily energy intake in males or females after the exercise intervention compared with baseline (M = 199.2 ± 2418.1 kJ and F = −131.6 ± 1912.0 kJ, P > 0.05). Fasting hunger levels significantly increased after the intervention compared with baseline values (M = 11.0 ± 21.1 min and F = 14.0 ± 22.9 mm, P < 0.0001), but there were no differences between males and females (P > 0.05). The exercise also improved satiety responses to an individualized fixed-energy breakfast (P < 0.0001). This was comparable in males and females. Conclusions Males and premenopausal females did not differ in their response to a 12-wk exercise intervention and achieved similar reductions in body fat. When exercise interventions are supervised and energy expenditure is controlled, there are no sex-based differences in the measured compensatory response to exercise.
Resumo:
Objectives To evaluate the feasibility, acceptability and effects of a Tai Chi and Qigong exercise programme in adults with elevated blood glucose. Design, Setting, and Participants A single group pre–post feasibility trial with 11 participants (3 male and 8 female; aged 42–65 years) with elevated blood glucose. Intervention Participants attended Tai Chi and Qigong exercise training for 1 to 1.5 h, 3 times per week for 12 weeks, and were encouraged to practise the exercises at home. Main Outcome Measures Indicators of metabolic syndrome (body mass index (BMI), waist circumference, blood pressure, fasting blood glucose, triglycerides, HDL-cholesterol); glucose control (HbA1c, fasting insulin and insulin resistance (HOMA)); health-related quality of life; stress and depressive symptoms. Results There was good adherence and high acceptability. There were significant improvements in four of the seven indicators of metabolic syndrome including BMI (mean difference −1.05, p<0.001), waist circumference (−2.80 cm, p<0.05), and systolic (−11.64 mm Hg, p<0.01) and diastolic blood pressure (−9.73 mm Hg, p<0.001), as well as in HbA1c (−0.32%, p<0.01), insulin resistance (−0.53, p<0.05), stress (−2.27, p<0.05), depressive symptoms (−3.60, p<0.05), and the SF-36 mental health summary score (5.13, p<0.05) and subscales for general health (19.00, p<0.01), mental health (10.55, p<0.01) and vitality (23.18, p<0.05). Conclusions The programme was feasible and acceptable and participants showed improvements in metabolic and psychological variables. A larger controlled trial is now needed to confirm these promising preliminary results.
Resumo:
Background: Whole body cryotherapy (WBC) is the therapeutic application of extreme cold air for a short duration. Minimal evidence is available for determining optimal exposure time. Purpose: To explore whether the length of WBC exposure induces differential changes in inflammatory markers, tissue oxygenation, skin and core temperature, thermal sensation and comfort. Method: This study was a randomised cross over design with participants acting as their own control. Fourteen male professional first team super league rugby players were exposed to 1, 2, and 3 minutes of WBC at -135°C. Testing took place the day after a competitive league fixture, each exposure separated by seven days. Results: No significant changes were found in the inflammatory cytokine interleukin six. Significant reductions (p<0.05) in deoxyhaemoglobin for gastrocnemius and vastus lateralis were found. In vastus lateralis significant reductions (p<0.05) in oxyhaemoglobin and tissue oxygenation index (p<0.05) were demonstrated. Significant reductions (p<0.05) in skin temperature were recorded. No significant changes were recorded in core temperature. Significant reductions (p<0.05) in thermal sensation and comfort were recorded. Conclusion: Three brief exposures to WBC separated by 1 week are not sufficient to induce physiological changes in IL-6 or core temperature. There are however significant changes in tissue oxyhaemoglobin, deoxyhaemoglobin, tissue oxygenation index, skin temperature and thermal sensation. We conclude that a 2 minute WBC exposure was the optimum exposure length at temperatures of -135°C and could be applied as the basis for future studies.
Resumo:
Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing’s thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25±6 years (mean ± sd), height 180±7 cm, body mass 79±9 kg, V˙O2max 57±6 ml.kg−1.min−1] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km⋅h−1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10–60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21°C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39°C in one of the 72 trials.
Resumo:
This article summarizes research from an ecological dynamics program of work on team sports exemplifying how small-sided and conditioned games (SSCG) can enhance skill acquisition and decision-making processes during training. The data highlighted show how constraints of different SSCG can facilitate emergence of continuous interpersonal coordination tendencies during practice to benefit team game players.