991 resultados para SPIN GLASSES (THEORY)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present first-principles density-functional-theory-based calculations to determine the effects of the strength of on-site electron correlation, magnetic ordering, pressure and Se vacancies on phonon frequencies and electronic structure of FeSe1-x. The theoretical equilibrium structure (lattice parameters) of FeSe depends sensitively on the value of the Hubbard parameter U of on-site correlation and magnetic ordering. Our results suggest that there is a competition between different antiferromagnetic states due to comparable magnetic exchange couplings between first- and second-neighbor Fe sites. As a result, a short range order of stripe antiferromagnetic type is shown to be relevant to the normal state of FeSe at low temperature. We show that there is a strong spin-phonon coupling in FeSe (comparable to its superconducting transition temperature) as reflected in large changes in the frequencies of certain phonons with different magnetic ordering, which is used to explain the observed hardening of a Raman-active phonon at temperatures (similar to 100 K) where magnetic ordering sets in. The symmetry of the stripe antiferromagnetic phase permits an induced stress with orthorhombic symmetry, leading to orthorhombic strain as a secondary order parameter at the temperature of magnetic ordering. The presence of Se vacancies in FeSe gives rise to a large peak in the density of states near the Fermi energy, which could enhance the superconducting transition temperature within the BCS-like picture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unified gauge theory of massless and massive spin-2 fields is of considerable current interest. The Poincaré gauge theories with quadratic Lagrangian are linearized, and the conditions on the parameters are found which will lead to viable linear theories with massive gauge particles. As well as the 2+ massless gravitons coming from the translational gauge potential, the rotational gauge potentials, in the linearized limit, give rise to 2+ and 2− particles of equal mass, as well as a massive pseudoscalar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The d.c. conductivity of phosphomolybdate and phosphotungstate glasses is discussed. The conductivity of these glasses is due to the hopping of electrons between two valence states (Mo5+ to Mo6+ or W5+ W6+). In some of the glasses, the activation energy itself is found to be a function of temperature. This appears to be due to thermally activated and variable-range hopping mechanisms operating in different temperature regimes. The relation between conductivity and the [M5+]/[Mtotal](M ≡ Mo, W) ratio does not show any systematic variation. This anomaly can be understood using the structural models of these glasses. In contrast, Mott's theory and the Triberis and Friedman model have been used to obtain conductivity parameters such as the percolation distance Rij and 2agrRij (agr is the tunnelling probability). The conductivity parameter 2agrRij is quite useful to resolve the controversy regarding the tunnelling term exp(2agrRij) existing in the literature. For low values of 2agrRij, it is shown that the exp (2agrRij) term is very significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to construct a nonequilibrium statistical‐mechanics theory to study hysteresis in ferromagnetic systems. We study the hysteretic response of model spin systems to periodic magnetic fields H(t) as a function of the amplitude H0 and frequency Ω. At fixed H0, we find conventional, squarelike hysteresis loops at low Ω, and rounded, roughly elliptical loops at high Ω, in agreement with experiments. For the O(N→∞), d=3, (Φ2)2 model with Langevin dynamics, we find a novel scaling behavior for the area A of the hysteresis loop, of the form A∝H0.660Ω0.33. We carry out a Monte Carlo simulation of the hysteretic response of the two‐dimensional, nearest‐neighbor, ferromagnetic Ising model. These results agree qualitatively with the results obtained for the O(N) model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear Overhauser effect equations are solved analytically for a homonuclear group of spins whose sites are periodically arranged, including the special cases where the spins lie at the vertices of a regular polygon and on a one-dimensional lattice. t is shown that, for long correlation times, the equations governing magnetization transfer resemble a diffusion equation. Furthermore the deviation from exact diffusion is quantitatively related to the molecular tumbling correlation time. Equations are derived for the range of magnetization travel subsequent to the perturbation of a single spin in a lattice for both the case of strictly dipolar relaxation and the more general situation where additional T1 mechanisms may be active. The theory given places no restrictions on the delay (or mixing) times, and it includes all the spins in the system. Simulations are presented to confirm the theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general structure of a metric-torsion theory of gravitation allows a parity-violating contribution to the complete action which is linear in the curvature tensor and vanishes identically in the absence of torsion. The resulting action involves, apart from the constant ¯K E =8pgr/c4, a coupling (B) which governs the strength of the parity interaction mediated by torsion. In this model the Brans-Dicke scalar field generates the torsion field, even though it has zero spin. The interesting consequence of the theory is that its results for the solar-system differ very little from those obtained from Brans-Dicke (BD) theory. Therefore the theory is indistinguishable from BD theory in solar-system experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and develop here a phenomenological Ginzburg-Landau-like theory of cuprate high-temperature superconductivity. The free energy of a cuprate superconductor is expressed as a functional F of the complex spin-singlet pair amplitude psi(ij) equivalent to psi(m) = Delta(m) exp(i phi(m)), where i and j are nearest-neighbor sites of the square planar Cu lattice in which the superconductivity is believed to primarily reside, and m labels the site located at the center of the bond between i and j. The system is modeled as a weakly coupled stack of such planes. We hypothesize a simple form FDelta, phi] = Sigma(m)A Delta(2)(m) + (B/2)Delta(4)(m)] + C Sigma(< mn >) Delta(m) Delta(n) cos(phi(m) - phi(n)) for the functional, where m and n are nearest-neighbor sites on the bond-center lattice. This form is analogous to the original continuum Ginzburg-Landau free-energy functional; the coefficients A, B, and C are determined from comparison with experiments. A combination of analytic approximations, numerical minimization, and Monte Carlo simulations is used to work out a number of consequences of the proposed functional for specific choices of A, B, and C as functions of hole density x and temperature T. There can be a rapid crossover of from small to large values as A changes sign from positive to negative on lowering T; this crossover temperature T-ms(x) is identified with the observed pseudogap temperature T*(x). The thermodynamic superconducting phase-coherence transition occurs at a lower temperature T-c(x), and describes superconductivity with d-wave symmetry for positive C. The calculated T-c(x) curve has the observed parabolic shape. The results for the superfluid density rho(s)(x, T), the local gap magnitude , the specific heat C-v(x, T) (with and without a magnetic field), as well as vortex properties, all obtained using the proposed functional, are compared successfully with experiments. We also obtain the electron spectral density as influenced by the coupling between the electrons and the correlation function of the pair amplitude calculated from the functional, and compare the results successfully with the electronic spectrum measured through angle resolved photoemission spectroscopy (ARPES). For the specific heat, vortex structure, and electron spectral density, only some of the final results are reported here; the details are presented in subsequent papers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an explicit solution of the problem of two coupled spin-1/2 impurities, interacting with a band of conduction electrons. We obtain an exact effective bosonized Hamiltonian, which is then treated by two different methods (low-energy theory and mean-field approach). Scale invariance is explicitly shown at the quantum critical point. The staggered susceptibility behaves like ln(T(K)/T) at low T, whereas the magnetic susceptibility and [S1.S2] are well behaved at the transition. The divergence of C(T)/T when approaching the transition point is also studied. The non-Fermi-liquid (actually marginal-Fermi-liquid) critical point is shown to arise because of the existence of anomalous correlations, which lead to degeneracies between bosonic and fermionic states of the system. The methods developed in this paper are of interest for studying more physically relevant models, for instance, for high-T(c) cuprates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical absorption and photoluminescence studies have been carried out at room temperature in 25 R2O-25 GeO2-49.5 B2O3-0.5 Nd2O3 glass systems, (Composition in mol%, R= Li, Na, K and Rb). Judd Ofelt Intensity parameters and other parameters like Racah (E-1, E-2 and E-3), Slater-Condon-Shortley (F-2, F-4 and F-6) Spin-Orbit Coupling (xi(4f)) and Configuration Interaction (alpha,beta and gamma) for Nd3+ ion in the glass system are calculated. The variation of the 02 parameters are interpreted in terms of the covalency of the RE ion in the glass matrix. Further the hypersensitive transition I-4(9/2) -> (4)G(5/2), (2)G(7/2) is analyzed with respect to the intensity ratio I-L/I-S and is found to be dependent on the type of alkali in the glass matrix. The Photoluminescence studies do not show any appreciable shift in the peak emission wavelength of the F-4(3/2) to I-4(11/2) transition with the change in alkali type. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr2O4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the 111] direction with a theory based on an exchange-striction mechanism leads to an estimate of the strength of the magnetoelastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inelastic light scattering studies on a single crystal of electron-doped Ca(Fe0.95Co0.05)(2)As-2 superconductor, covering the tetragonal-to-orthorhombic structural transition as well as the magnetic transition at T-SM similar to 140 K and the superconducting transition temperature T-c similar to 23 K, reveal evidence for superconductivity-induced phonon renormalization. In particular, the phonon mode near 260 cm(-1) shows hardening below T-c, signaling its coupling with the superconducting gap. All three Raman active phonon modes show anomalous temperature dependence between room temperature and T-c, i.e. the phonon frequency decreases with lowering temperature. Further, the frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory based calculations, we show that the low temperature phase (T-c < T < T-SM) exhibits short-ranged stripe antiferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study muon-spin rotation (mu SR) spectra in the mixed phase of highly anisotropic layered superconductors, specifically Bi2+xSr2-xCaCu2O8+delta (BSCCO), by modeling the fluid and solid phases of pancake Vortices using liquid-state and density functional methods. The role of thermal fluctuations in causing motional narrowing of mu SR line shapes is quantified in terms of a first-principles theory of the flux-lattice melting transition. The effects of random point pinning are investigated using a replica treatment of liquid-state correlations and a replicated density functional theory. Our results indicate that motional narrowing in the pure system, although substantial, cannot account for the remarkably small linewidths obtained experimentally at relatively high fields and low temperatures. We find that satisfactory agreement with the mu SR data for BSCCO in this regime can be obtained through the ansatz that this ''phase'' is characterized by frozen short-range positional correlations reflecting the structure of the liquid just above the melting transition. This proposal is consistent with recent suggestions of a ''pinned liquid'' or ''glassy'' state of pancake Vortices in the presence of pinning disorder. Our results for the high-temperature liquid phase indicate that measurable linewidths may be obtained in this phase as a consequence of density inhomogeneities induced by the pinning disorder. The results presented here comprise a unified, first-principles theoretical treatment of mu SR spectra in highly anisotropic layered superconductors in terms of a controlled set of approximations. [S0163-1829(99)08033-9].