194 resultados para Rye.
Resumo:
A field plot experiment was set up on a sandy loam soil of SW England in order to determine the efficiency of nitrogen use from different cattle manures. The manure treatments were low and high dry matter cattle slurries and one farmyard manure applied at a target rate of 200 kg total Nha(-1) year(-1), and an untreated control. There were three different cropping systems: ryegrass/clover mixture, maize/rye and maize/bare soil, which were evaluated during 1998/99 and 1999/00. Measurements were made of N losses, N uptake and herbage DM yields. Result showed that manure type had a significant effect on N utilisation only for maize. N balances were negative in maize (approximately -247 to -10 kg N) compared to grass (approximately 5-158 kg N). Agronomic management was more important than manure type in influencing N losses, where soil cultivation appeared to be a key factor when comparing maize and grass systems. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
Resumo:
Estimation of whole-grain (WG) food intake in epidemiological and nutritional studies is normally based on general diet FFQ, which are not designed to specifically capture WG intake. To estimate WG cereal intake, we developed a forty-three-item FFQ focused on cereal product intake over the past month. We validated this questionnaire against a 3-d-weighed food record (3DWFR) in thirty-one subjects living in the French-speaking part of Switzerland (nineteen female and twelve male). Subjects completed the FFQ on day 1 (FFQ1), the 3DWFR between days 2 and 13 and the FFQ again on day 14 (FFQ2). The subjects provided a fasting blood sample within 1 week of FFQ2. Total cereal intake, total WG intake, intake of individual cereals, intake of different groups of cereal products and alkylresorcinol (AR) intake were calculated from both FFQ and the 3DWFR. Plasma AR, possible biomarkers for WG wheat and rye intake were also analysed. The total WG intake for the 3DWFR, FFQ1, FFQ2 was 26 (sd 22), 28 (sd 25) and 21 (sd 16) g/d, respectively. Mean plasma AR concentration was 55.8 (sd 26.8) nmol/l. FFQ1, FFQ2 and plasma AR were correlated with the 3DWFR (r 0.72, 0.81 and 0.57, respectively). Adjustment for age, sex, BMI and total energy intake did not affect the results. This FFQ appears to give a rapid and adequate estimate of WG cereal intake in free-living subjects.
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.
Resumo:
International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.
Resumo:
Acrylamide, a chemical that is probably carcinogenic in humans and has neurological and reproductive effects, forms from free asparagine and reducing sugars during high-temperature cooking and processing of common foods. Potato and cereal products are major contributors to dietary exposure to acrylamide and while the food industry reacted rapidly to the discovery of acrylamide in some of the most popular foods, the issue remains a difficult one for many sectors. Efforts to reduce acrylamide formation would be greatly facilitated by the development of crop varieties with lower concentrations of free asparagine and/or reducing sugars, and of best agronomic practice to ensure that concentrations are kept as low as possible. This review describes how acrylamide is formed, the factors affecting free asparagine and sugar concentrations in crop plants, and the sometimes complex relationship between precursor concentration and acrylamide-forming potential. It covers some of the strategies being used to reduce free asparagine and sugar concentrations through genetic modification and other genetic techniques, such as the identification of quantitative trait loci. The link between acrylamide formation, flavour, and colour is discussed, as well as the difficulty of balancing the unknown risk of exposure to acrylamide in the levels that are present in foods with the well-established health benefits of some of the foods concerned. Key words: Amino acids, asparagine, cereals, crop quality, food safety, Maillard reaction, potato, rye, sugars, wheat.
Resumo:
Scope: Fibers and prebiotics represent a useful dietary approach for modulating the human gut microbiome. Therefore, aim of the present study was to investigate the impact of four flours (wholegrain rye, wholegrain wheat, chickpeas and lentils 50:50, and barley milled grains), characterized by a naturally high content in dietary fibers, on the intestinal microbiota composition and metabolomic output. Methods and results: A validated three-stage continuous fermentative system simulating the human colon was used to resemble the complexity and diversity of the intestinal microbiota. Fluorescence in situ hybridization was used to evaluate the impact of the flours on the composition of the microbiota, while small-molecule metabolome was assessed by NMR analysis followed by multivariate pattern recognition techniques. HT29 cell-growth curve assay was used to evaluate the modulatory properties of the bacterial metabolites on the growth of intestinal epithelial cells. All the four flours showed positive modulations of the microbiota composition and metabolic activity. Furthermore, none of the flours influenced the growth-modulatory potential of the metabolites toward HT29 cells. Conclusion: Our findings support the utilization of the tested ingredients in the development of a variety of potentially prebiotic food products aimed at improving gastrointestinal health.
Resumo:
Lunasin is a peptide from soybean seeds which has been demonstrated to have anticancer properties. It has also been reported in cereal seeds: wheat, rye, barley and Triticale. However, extensive searches of transcriptome and DNA sequence databases for wheat and other cereals have failed to identify sequences encoding either the lunasin peptide or a precursor protein. This raises the question of the origin of the lunasin reported in cereal grain.
Resumo:
Claviceps purpurea is a biotrophic fungal pathogen of grasses causing the ergot disease. The infection process of C. purpurea on rye flowers is accompanied by pectin degradation and polygalacturonase (PG) activity represents a pathogenicity factor. Wheat is also infected by C. purpurea and we tested whether the presence of polygalacturonase inhibiting protein (PGIP) can affect pathogen infection and ergot disease development. Wheat transgenic plants expressing the bean PvPGIP2 did not show a clear reduction of disease symptoms when infected with C. purpurea. To ascertain the possible cause underlying this lack of improved resistance of PvPGIP2 plants, we expressed both polygalacturonases present in the C. purpurea genome, cppg1 and cppg2 in Pichia pastoris. In vitro assays using the heterologous expressed PGs and PvPGIP2 showed that neither PG is inhibited by this inhibitor. To further investigate the role of PG in the C. purpurea/wheat system, we demonstrated that the activity of both PGs of C. purpurea is reduced on highly methyl esterified pectin. Finally, we showed that this reduction in PG activity is relevant in planta, by inoculating with C. purpurea transgenic wheat plants overexpressing a pectin methyl esterase inhibitor (PMEI) and showing a high degree of pectin methyl esterification. We observed reduced disease symptoms in the transgenic line compared with null controls. Together, these results highlight the importance of pectin degradation for ergot disease development in wheat and sustain the notion that inhibition of pectin degradation may represent a possible route to control of ergot in cereals.
Resumo:
The quantification of uncertainty is an increasingly popular topic, with clear importance for climate change policy. However, uncertainty assessments are open to a range of interpretations, each of which may lead to a different policy recommendation. In the EQUIP project researchers from the UK climate modelling, statistical modelling, and impacts communities worked together on ‘end-to-end’ uncertainty assessments of climate change and its impacts. Here, we use an experiment in peer review amongst project members to assess variation in the assessment of uncertainties between EQUIP researchers. We find overall agreement on key sources of uncertainty but a large variation in the assessment of the methods used for uncertainty assessment. Results show that communication aimed at specialists makes the methods used harder to assess. There is also evidence of individual bias, which is partially attributable to disciplinary backgrounds. However, varying views on the methods used to quantify uncertainty did not preclude consensus on the consequential results produced using those methods. Based on our analysis, we make recommendations for developing and presenting statements on climate and its impacts. These include the use of a common uncertainty reporting format in order to make assumptions clear; presentation of results in terms of processes and trade-offs rather than only numerical ranges; and reporting multiple assessments of uncertainty in order to elucidate a more complete picture of impacts and their uncertainties. This in turn implies research should be done by teams of people with a range of backgrounds and time for interaction and discussion, with fewer but more comprehensive outputs in which the range of opinions is recorded.
Resumo:
Three sludge types from the same treatment stream (undigested liquid, anaerobically digested liquid and dewatered, anaerobically digested cake) were used in a field based tub study. Amendments (4, 8, and 16 Mg dry solid (ds)ha(-1)) were incorporated into the upper 15 cm of a sandy loam soil prior to sowing with rye-grass (Lolium perenne L.). Nitrogen transformations in the soil were determined for the 80 d period following incorporation. Nitrogen uptake and crop yield were measured in the cut sward 35 and 70 d after sowing. The study showed that application of sewage sludge at rates as low as 4 Mgha(-1) can have a nutritional benefit to rye-grass over the two harvests. Differences in N transformation, and hence crop nutritional benefit, between sludge types were evident throughout the experiment. In particular, the dewatering process changed the mineral N characteristics of the anaerobically digested sludge, which, when not dewatered, outperformed the other sludges in terms of yield and mineralisation rate at both harvests. The dewatered sludge produced the lowest yield of rye-grass. The undigested liquid sludge had the lowest foliar N and soil NO(3)-N concentrations, possibly immobilised as the large oxidisable C component of this sludge was metabolised by the microbial biomass. Correlation data support the concept of preferential uptake of NH(4)-N over NO(3)-N in Lolium perenne. Results are discussed in the context of managing sludge type and application for a plant nutrient source and NO(3)-N release.
Resumo:
O objetivo do presente trabalho foi avaliar a seletividade do herbicida halosulfuron isoladamente e na mistura com glyphosate, aplicados em pré e pós-emergência, para culturas de verão (milho, feijão, algodão e soja) e para culturas de inverno (aveia-preta, azevém, centeio, trigo e triticale). Foram instalados dois experimentos em campo, nas Fazendas Experimentais do Lageado e de São Manuel - UNESP - Botucatu-SP - Brasil. Os tratamentos foram constituídos da aplicação isolada do herbicida halosulfuron (100/150 g ha-1), em pré e pós-emergência, e em mistura de tanque halosulfuron + glyphosate NA e WG (100+4.000 g ha-1 e 100+2.000/4.000 g ha¹, respectivamente), em pré-emergência e em diferentes épocas de aplicação (2, 15 e 30 dias antes e 15 e 30 depois da semeadura). A intensidade da fitotoxicidade encontrada nas plantas das culturas de soja, milho, feijão, algodão e azevém foi devido à aplicação do herbicida halosulfuron, que esteve relacionada com dosagens, época e modo de aplicação. Quanto mais próximo da aplicação do halosulfuron em pós-emergência da semeadura das culturas, maiores foram as injúrias encontradas em suas plantas. Todos os tratamentos testados não proporcionaram sintomas de fitotoxicidade nas plantas de aveia-preta, centeio, trigo e triticale.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)