966 resultados para Ruelle-Takens scenario
Resumo:
By employing Moody’s corporate default and rating transition data spanning the last 90 years we explore how much capital banks should hold against their corporate loan portfolios to withstand historical stress scenarios. Specifically, we will focus on the worst case scenario over the observation period, the Great Depression. We find that migration risk and the length of the investment horizon are critical factors when determining bank capital needs in a crisis. We show that capital may need to rise more than three times when the horizon is increased from 1 year, as required by current and future regulation, to 3 years. Increases are still important but of a lower magnitude when migration risk is introduced in the analysis. Further, we find that the new bank capital requirements under the so-called Basel 3 agreement would enable banks to absorb Great Depression-style losses. But, such losses would dent regulatory capital considerably and far beyond the capital buffers that have been proposed to ensure that banks survive crisis periods without government support.
Resumo:
In this paper, we propose a scenario framework that could provide a scenario “thread” through the different climate research communities (climate change – vulnerability, impact, and adaptation (VIA) and mitigation) in order to provide assessment of mitigation and adaptation strategies and other VIA challenges. The scenario framework is organised around a matrix with two main axes: radiative forcing levels and socio-economic conditions. The radiative forcing levels (and the associated climate signal) are described by the new Representative Concentration Pathways. The second axis, socio-economic developments, comprises elements that affect the capacity for mitigation and adaptation, as well as the exposure to climate impacts. The proposed scenarios derived from this framework are limited in number, allow for comparison across various mitigation and adaptation levels, address a range of vulnerability characteristics, provide information across climate forcing and vulnerability states and span a full century time scale. Assessments based on the proposed scenario framework would strengthen cooperation between integrated-assessment modelers, climate modelers and vulnerability, impact and adaptation researchers, and most importantly, facilitate the development of more consistent and comparable research within and across communities.
Resumo:
We reconsider the theory of the linear response of non-equilibrium steady states to perturbations. We �rst show that by using a general functional decomposition for space-time dependent forcings, we can de�ne elementary susceptibilities that allow to construct the response of the system to general perturbations. Starting from the de�nition of SRB measure, we then study the consequence of taking di�erent sampling schemes for analysing the response of the system. We show that only a speci�c choice of the time horizon for evaluating the response of the system to a general time-dependent perturbation allows to obtain the formula �rst presented by Ruelle. We also discuss the special case of periodic perturbations, showing that when they are taken into consideration the sampling can be �ne-tuned to make the de�nition of the correct time horizon immaterial. Finally, we discuss the implications of our results in terms of strategies for analyzing the outputs of numerical experiments by providing a critical review of a formula proposed by Reick.
Resumo:
This paper presents the development of an export coefficient model to characterise the rates and sources of P export from land to water in four reservoir systems located in a semi-arid rural region in southern of Portugal. The model was developed to enable effective management of these important water resource systems under the EU Water Framework Directive. This is the first time such an approach has been fully adapted for the semi-arid systems typical of Mediterranean Europe. The sources of P loading delivered to each reservoir from its catchment were determined and scenario analysis was undertaken to predict the likely impact of catchment management strategies on the scale of rate of P loading delivered to each water body from its catchment. The results indicate the importance of farming and sewage treatment works/collective septic tanks discharges as the main contributors to the total diffuse and point source P loading delivered to the reservoirs, respectively. A reduction in the total P loading for all study areas would require control of farming practices and more efficient removal of P from human wastes prior to discharge to surface waters. The scenario analysis indicates a strategy based solely on reducing the agricultural P surplus may result in only a slow improvement in water quality, which would be unlikely to support the generation of good ecological status in reservoirs. The model application indicates that a reduction of P-inputs to the reservoirs should first focus on reducing P loading from sewage effluent discharges through the introduction of tertiary treatment (P-stripping) in all major residential areas. The fully calibrated export coefficient modelling approach transferred well to semi-arid regions, with the only significant limitation being the availability of suitable input data to drive the model. Further studies using this approach in semi-arid catchments are now needed to increase the knowledge of nutrient export behaviours in semi-arid regions.
Resumo:
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
Resumo:
The scientific community is developing new global, regional, and sectoral scenarios to facilitate interdisciplinary research and assessment to explore the range of possible future climates and related physical changes that could pose risks to human and natural systems; how these changes could interact with social, economic, and environmental development pathways; the degree to which mitigation and adaptation policies can avoid and reduce risks; the costs and benefits of various policy mixes; residual impacts under alternative pathways; and the relationship of future climate change and adaptation and mitigation policy responses with sustainable development. This paper provides the background to and process of developing the conceptual framework for these scenarios, as described in the three subsequent papers in this Special Issue (Van Vuuren et al.; O’Neill et al.; Kriegler et al.). The paper also discusses research needs to further develop and apply this framework. A key goal of the current framework design and its future development is to facilitate the collaboration of climate change researchers from a broad range of perspectives and disciplines to develop policy- and decision-relevant scenarios and explore the challenges and opportunities human and natural systems could face with additional climate change.
Resumo:
Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2-Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant -0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to -2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of -0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.
Resumo:
Cities globally are in the midst of taking action to reduce greenhouse gas (GHG) emissions. After the vital step of emissions quantification, strategies must be developed to detail how emissions reductions targets will be achieved. The Pathways to Urban Reductions in Greenhouse Gas Emissions (PURGE) model allows the estimation of emissions from four pertinent urban sectors: electricity generation, buildings, private transportation, and waste. Additionally, the carbon storage from urban and regional forests is modeled. An emissions scenario is examined for a case study of the greater Toronto, Ontario, Canada, area using data on current technology stocks and government projections for stock change. The scenario presented suggests that even with some aggressive targets for technological adoption (especially in the transportation sector), it will be difficult to achieve the less ambitious 2050 emissions reduction goals of the Intergovernmental Panel on Climate Change. This is largely attributable to the long life of the building stock and limitations of current retrofit practices. Additionally, demand reduction (through transportation mode shifting and building occupant behavior) will be an important component of future emissions cuts.
Resumo:
This paper aims at identifying some of the key factors in adopting an organization-wide software reuse program. The factors are derived from practical experience reported by industry professionals, through a survey involving 57 Brazilian small, medium and large software organizations. Some of them produce software with commonality between applications, and have mature processes, while others successfully achieved reuse through isolated, ad hoe efforts. The paper compiles the answers from the survey participants, showing which factors were more associated with reuse success. Based on this relationship, a guide is presented, pointing out which factors should be more strongly considered by small, medium and large organizations attempting to establish a reuse program. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Accessibility has become a serious issue to be considered by various sectors of the society. However, what are the differences between the perception of accessibility by academy, government and industry? In this paper, we present an analysis of this issue based on a large survey carried out with 613 participants involved with Web development, from all of the 27 Brazilian states. The paper presents results from the data analysis for each sector, along with statistical tests regarding the main different issues related to each of the sectors, such as: government and law, industry and techniques, academy and education. The concern about accessibility law is poor even amongst people from government sector. The analyses have also pointed out that the academy has not been addressing accessibility training accordingly. The knowledge about proper techniques to produce accessible contents is better than other sectors`, but still limited in industry. Stronger investments in training and in the promotion of consciousness about the law may be pointed as the most important tools to help a more effective policy on Web accessibility in Brazil.
Resumo:
We show a scenario of a two-frequeney torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T(2) with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-if intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Consideration of a wide range of plausible crime scenarios during any crime investigation is important to seek convincing evidence and hence to minimize the likelihood of miscarriages of justice. It is equally important for crime investigators to be able to employ effective and efficient evidence-collection strategies that are likely to produce the most conclusive information under limited available resources. An intelligent decision support system that can assist human investigators by automatically constructing plausible scenarios, and reasoning with the likely best investigating actions will clearly be very helpful in addressing these challenging problems. This paper presents a system for creating scenario spaces from given evidence, based on an integrated application of techniques for compositional modelling and Bayesian network-based evidence evaluation. Methods of analysis are also provided by the use of entropy to exploit the synthesized scenario spaces in order to prioritize investigating actions and hypotheses. These theoretical developments are illustrated by realistic examples of serious crime investigation.
Resumo:
A crucial concern in the evaluation of evidence related to a major crime is the formulation of sufficient alternative plausible scenarios that can explain the available evidence. However, software aimed at assisting human crime investigators by automatically constructing crime scenarios from evidence is difficult to develop because of the almost infinite variation of plausible crime scenarios. This paper introduces a novel knowledge driven methodology for crime scenario construction and it presents a decision support system based on it. The approach works by storing the component events of the scenarios instead of entire scenarios and by providing an algorithm that can instantiate and compose these component events into useful scenarios. The scenario composition approach is highly adaptable to unanticipated cases because it allows component events to match the case under investigation in many different ways. Given a description of the available evidence, it generates a network of plausible scenarios that can then be analysed to devise effective evidence collection strategies. The applicability of the ideas presented here are demonstrated by means of a realistic example and prototype decision support software.