116 resultados para Rotylenchulus reniformis


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0°C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the Indian Ocean Expedition of R/V METEOR phytoplankton samples were taken with a multiple closing net (Multinet) at 103 stations. In this material the diatoms were investigated. In all 247 taxa could be identified which belong to 242 species and 5 varieties of formae of 80 genera. Of these 1 variety, 15 pecies, and 3 genera are newly described. New combinations were made for 18 species, and a number of old combinations was reinstated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biogenic calcification is influenced by the concentration of available carbonate ions. The recent confirmation of this for hermatypic corals has raised concern over the future of coral reefs because [CO3] is a decreasing function of increasing pCO2 in the atmosphere. As one of the overriding features of coral reefs is their diversity, understanding the degree of variability between species in their ability to cope with a change in [CO3] is a priority. We cultured four phylogenetically and physiologically different species of hermatypic coral (Acropora verweyi, Galaxea fascicularis, Pavona cactus and Turbinaria reniformis) under 'normal' (280 µmol/kg) and 'low' (140 µmol/kg) carbonate-ion concentrations. The effect on skeletogenesis was investigated quantitatively (by calcification rate) and qualitatively (by microstructural appearance of growing crystalline fibres using scanning electron microscopy (SEM)). The 'low carbonate' treatment resulted in a significant suppression of calcification rate and a tendency for weaker crystallization at the distal tips of fibres. However, while the calcification rate was affected uniformly across species (13-18% reduction), the magnitude of the microstructural response was highly species specific: crystallization was most markedly affected in A. verweyi and least in T. reniformis. These results are discussed in relation to past records and future predictions of carbonate variability in the oceans.