876 resultados para Roma - Politica e governo - 30 A.C.-476
Resumo:
选取小叶锦鸡儿、山杏、杨树和差巴嘎蒿4种典型人工固沙群落为研究对象,以半流动沙丘为对照,对土壤养分含量、微生物量和主要酶的活性进行了对比研究。结果表明,4种固沙植物均能明显改善土壤C、N、P、K和微生物量C、N含量,提高土壤水解酶和氧化还原酶的活性,尤其是对土壤表层0~10 cm的改良效果更加明显。其中小叶锦鸡儿群落0~30 cm土层内微生物量C、N含量、脲酶、磷酸单酯酶、蔗糖酶、蛋白酶、脱氢酶和硝酸还原酶的活性以及有机质、N、P、K等养分含量明显高于其它3种植物群落,表现出强大的改善沙土环境的能力,可在沙化土地植被建设中大面积应用。土壤微生物量C、N分别与有机质和全N以及与各种土壤酶活性之间均存在显著的正相关性。
Resumo:
为探讨小叶锦鸡儿防风固沙、改良土壤养分状况和生物活性的能力,选取6年和11年生小叶锦鸡儿人工固沙林为对象,以流动沙丘为对照,研究不同年龄固沙林降低风速和风沙流结构特征、土壤有机质和N,P含量、土壤酶的活性以及微生物生物量C,N,P含量的变化特征。结果表明:在小叶锦鸡儿灌木林内,各个高度风速和输沙量均显著低于流动沙丘,防风固沙效果明显。随着小叶锦鸡儿固沙群落发育时间的增长,其综合防风性能提高,土壤有机质、N,P,K含量和生物活性逐渐得到改善。O~30 cm土层中磷酸单酯酶、蛋白酶、脲酶、蔗糖酶、硝酸还原酶、多酚氧化酶、脱氢酶的活性和土壤微生物生物量C,N和P含量均大幅度提高,其中0~10 cm土层增幅最大。土壤酶中蔗糖酶的活性增加最为迅速,6年和11年生固沙林0~10 cm土层分别是流动沙丘的28.58倍和55.2l倍。小叶锦鸡儿不仅具有较好的防风固沙性能,而且表现出强大的改善土壤养分和生物活性的能力,可作为优良的固沙植物材料在科尔沁沙地大面积推广应用。
Resumo:
经 12年田间试验 ,各施肥处理耕层土壤的肥力变化表明 ,在保持农业系统养分循环再利用基础上 ,施用适量化肥以平衡土壤养分收支 ,不仅可实现作物高产 ,减少过剩养分进入环境 ,并可改善土壤肥力 ,表现为明显提高了耕层土壤的有机C、N浓度 .不过 ,在本例中欲保持较高的土壤有效P水平 ,恐需在平衡土壤P收支基础上适当增加P肥施用量 .
Resumo:
香味全缘孔菌是一种可以提取天然香料的高等真菌。本项研究对分离于野外的香味全缘孔菌从不同的温度、pH值以及不同的C源和N源的营养成分进行室内培养。其结果显示香味全缘孔菌营养菌丝生长的相对最适温度为33℃;最佳N源为酵母汁,其次为牛肉膏;相对在培养基pH值为6.0时菌丝生长较快,较好的C源为葡萄糖。这些结果为大规模人工培养香味全缘孔菌提供了很好的指导作用。
Resumo:
本文报道了两种生于杨树上的多孔菌,杨生薄孔菌(AntrodialeucaenaY.C.Dai&Niemel )和西伯利亚毡被孔菌(Spongipellissibirica(Penzina&Ryvarden)Penzina&Kotir.)。根据所采集标本对其进行了详细描述。杨生薄孔菌的主要特征为子实体平伏反转,二系菌丝系统,生殖菌丝具锁状联合,担孢子圆柱形,造成杨树木材褐色腐朽。杨生薄孔菌目前只发现在中国东北,该种与垫状薄孔菌(Antrodiapulvinascens(Pilat)Niemel )和大孔薄孔菌Antrodiamacra(Sommerf.)Niemel 较类似,但垫状薄孔菌的担子果不形成真正的菌盖,其担孢子为椭圆形,菌丝组织中无结晶体存在。大孔薄孔菌也生长在杨树上,但该种只形成平伏的子实体,其孔口和担孢子均比杨生薄孔菌大。西伯利亚毡被孔菌目前只发现在中国东北和俄罗斯的西伯利亚地区,其主要特征为子实体盖状、白色、肉质,单系菌丝系统,生殖菌丝具锁状联合,担孢子椭圆形至近圆形,通常生长在杨树活立木上,造成木材白色腐朽。该种与同属的松软毡被孔菌Spongipellisspumea(Sower by:Fr.)Pat.很接近,但后者的孔口为圆形且完整,其担孢子比西伯利亚毡被孔菌的大。
Resumo:
A very simple and effective wet chemical route to direct synthesis of well-dispersed Pt nanoparticles with urchinlike morphology is proposed, which was carried out by simply mixing H2PtCl6 aqueous solution and poly(vinyl pyrrolidone) with the initial molar ratios of 1:3.5 kept constant at 30 degrees C for 3 days in the presence of formic acid. As-prepared urchinlike Pt nanostructures showed excellent electrocatalytic activity toward the reduction of dioxygen and oxidation of methanol and could be used as a promising nanoelectrocatalyst.
Resumo:
3,3-Dichloro-N,N'-biphthalimide (3,3'-DCBPI), 3,4'-dichloro-N,N'-biphthalimide (3,4'-DCBPI), and 4,4'-dichloro-N,N'X-biphthalimide (4,4'-DCBPI) were synthesized from 3- or 4-chlorophthalic anhydrides and hydrazine in glacial acetic acid. The yield of 3,3'-DCBPI (90%) was much higher than that of 4,4'-DCBPI (33%) because of the better stability of the intermediate, 3-chloro-N-aminophthalimide, and 3,3'-DCBPI. A series of hydrazine-based polyimides were prepared from isomeric DCBPIs and 4,4-thiobisbenzenethiol (TBBT) in N,N-dimethylacetamide in the presence of tributylamine. Inherent viscosity of these polymers was in the range of 0.51-0.69 dL/g in 1-methyl-2-pyrrolidinone (NMP) at 30 degrees C. These polyimides were soluble in 1,1,2,2-terachloroethane, NMP, and phenols. The 5% weight-loss temperatures (T(g)s) of the polymers were near 450 degrees C in N-2. Their glass-transition temperatures (T(g)s) determined by dynamic mechanical thermal analysis and differential scanning calorimetry increased according to the order of polyimides based on 4,4'-DCBPI, 3,4'-DCBPI, and 3,3'-DCBPI. The hydrolytic stability of these polymers was measured under acid, basic, and neutral conditions and the results indicated that the order was 3,3'-DCBPI/TBBT > 3,4'-DCBPI/TBBT > 4,4'-DCBPI/TBBT.
Resumo:
A phenolphthalein immobilized cellulose membrane for an optical pH sensor was described. The phenolphthalein was first reacted with the formaldehyde to produce a series of prepolymers with many hydroxymethyl groups. In this paper, the prepolymers was abbreviated to phenolphthalein-formaldehyde (PPF). Then the PPF was covalently immobilized to the diacetylcellulose membrane via hydroxymethyl groups. Finally the membrane was hydrolyzed in the 0.1 M NaOH solution for 24 h to reduce the response time. Advantageous features of the pH-sensitive membrane include (a) a large dynamic range from pH 8.0 to 12.50, or even broader, (b) rapid response time (2-30 s), (c) easy of fabrication, and (d) a promising material for determination of high pH values. The immobilized PPF has a broader dynamic range from 8.0 to 12.50 than the free phenolphthalein from pH 8.0 to 11.0, and this was due to the newly produced methylenes in our investigation.
Resumo:
A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.
Resumo:
The organic sol method for preparing ultrafine transition metal colloid particles reported for the first time by Bonnemann et al. [H. Bonnemann, W Brijoux, R. Brinkmann, E. Dinjus, T. Jou beta en, B. Korall, Angew. Chem. Int. Ed. Engl., 30 (1991) 1312] has been improved in this paper. The improved organic sol method uses SnCl2 as the reductant and methanol as the organic solvent. Thus, this method is very simple and inexpensive. It was found that the average size of the Pt particles in the Pt/C catalysts can be controlled by adjusting the evaporating temperature of the solvent. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt particles on electrocatalytic performance for methanol oxidation. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that when the evaporating temperatures of the solvent are 65, 60, 50, 40, and 30 degrees C, the average sizes of the Pt particles in the Pt/C catalysts prepared are: 2.2, 3.2, 3.8, 4.3, and 4.8 nm, respectively. The X-ray photoelectron spectroscopic (XPS) results demonstrated that the small Pt particles are easily oxidized and the decomposition/adsorption of methanol cannot proceed on the surfaces of Pt oxides.
Resumo:
A Series of novel homo- and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5-bis (4-aminophenyl) pyridine and 2-(4aminophenyl)-5-aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60-9.64 dL/g (c = 0.5 g/dL in DMAC, 30 degrees C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548-598 degrees C in air. The glass transition temperatures of the PMDA-based samples are in the range of 395-438 degrees C, while the BPDA-based polyimides show two glass transition temperatures (T(g)1 and T(g)2), ranging from 268 to 353 degrees C and from 395 to 418 degrees C, respectively. The flexible films possess tensile modulus in the range of 3.42-6.39 GPa, strength in the range of 112-363 MPa and an elongation at break in the range of 1.2-69%. The strong reflection peaks in the wide-angle X-ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity.
Resumo:
2-(4-Aminophenyl)-5-aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo- and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4-phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97-4.38 dL/g (c = 0.5 g/dL, in DMAc, 30 degrees C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307-434 degrees C and the 10% weight loss temperature is in the range of 556-609 degrees C under air. The polyimide films possess strength at break in the range of 185-271 MPa, elongations at break in the range of 6.8-51%, and tensile modulus in the range of 3.5-6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance.
Resumo:
A charge transfer salt, (Bu4N)(4) (C5H6)[(HSiMo11MoO40)-Mo-VI-O-V] has been photochemically synthesized from (Bu4N)(4)SiMo12O40 and 1.3-cyclopentadiene and Characterized, by elemental analysis, IR spectra, solid diffusion reflectance electronic spectra, CV and ESR. The X-ray crystal structure revealed that the title complex crystal data are as follows: triclinic, space group P (1) over bar, a = 14.347(3), b = 14.423(3), c = 27.158(5) Angstrom, alpha = 96.90(3), beta = 104.18(3), gamma = 98.20(3)degrees, V = 5322(2) Angstrom (3), Z = 2, M-r = 2855. 30, D-c = 1.782g.cm(-3), F(000) = 2860, R = 0.0719, wR = 0.198. The title compound is composed of 1.3-cyclopentadiene, four tetrabutylammonium and [(SiMo11MoO40)-Mo-VI-O-V](4-) anion.
Resumo:
Polyimides were prepared from diamines: 2,4,6-trimethyl-1,3-phenylenediamine (3MPDA) and 2,3,4,5-tetramethyl-1,4-phenylenediamine (4MPDA). 1,4-Bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3'-4,4'-diphenylsulphone tetracarboxylic dianhydride (SO(2)PDA), 3,3',4,4'-diphenylsulphide tetracarboxylic dianhydride (SPDA), pyromellitic dianhydride (PMDA), and 2,2'-bis(3,4-dicarboxyphenyl)hexa-fluoroisopropane dianhydride (6FDA) were used as dianhydride. The gas permeabilities of H-2, O-2 and N-2 through the polyimides were measured at temperatures from 30 degrees C to 90 degrees C. The results show that as methyl and trifluoromethyl substitution groups densities increase from 7.73 x 10(-3) molcm(-3) to 13.50 x 10(-3)molcm(-3), the peameability of H-2 increases 10-fold at 60% loss of permselectivity of H-2/N-2 however, the permeability of O-2 increases 20-fold at 20% loss of permselectivity of O-2/N-2. For O-2/N-2 separation, PMDA-3MPDA has similar performance to 6FDA-3MPDA and 6FDA-4MPDA; all have higher permeabilities for O-2 than normal polyimides, and the P(O-2)/alpha(O-2/N-2) trade-off relationships lie on the upper bound line for polymers. (C) 1999 Society of Chemical Industry.
Resumo:
The structural relaxation process of an inorganic glass (Li(2)O2SiO(2)) has been studied by differential scanning calorimetry. The sample is subjected to different thermal ageing histories with isothermal stages at an ageing temperature of T-g - 30 degrees C for different ageing times and at an ageing time of 16 h for different ageing temperatures. A four-parameter Tool-Narayanaswamy-Moynihan (TNM) model, is applied to simulate the normalized specific-heat curves measured. The ageing-temperature and ageing-time dependence of the structural relaxation parameters in the TNM model is obtained. (C) 1998 Elsevier Science S.A. All rights reserved.