929 resultados para Restrictive Cardiomyopathy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: An elevated early (E) to late (A) diastolic filling velocities ratio, typically seen in advanced diastolic dysfunction, has also been observed after cardioversion of atrial fibrillation as a consequence of the depressed left atrial (LA) contractility. We hypothesized that the impaired LA contractile function demonstrated after orthotopic cardiac transplantation (OCT) could also lead to this "pseudorestrictive" pattern. METHOD: E/A ratio related to the tissue Doppler early mitral annular velocity (Ea) as preload-independent index of LV relaxation was evaluated in all consecutive OCT patients between 2005 and 2007. RESULTS: The study population comprised 48 patients 97 ± 77 months after OCT. Thirty-two patients (67%) had an E/A ratio > 2. LV systolic function and myocardial relaxation assessed by the Ea velocity were similar compared to patients with normal ratio (61 ± 6% vs. 60 ± 12%, P = 0.854 and 15 ± 4 cm/s vs. 14 ± 3 cm/s, r = 0.15, P = 0.323, respectively). On the other hand, the proportion of the recipient and donor LA cuffs as estimated by the recipient/global LA area ratio and the LA emptying fraction significantly correlated with the E/A ratio (r = 0.40, P = 0.005 and r =-0.33, P = 0.022, respectively). CONCLUSION: Our study shows that there is a high prevalence of elevated E/A ratio after standard OCT which seems mainly related to reduced LA contractility. Recognition of this "pseudorestrictive" pattern may avoid misdiagnosis of diastolic dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the effect of the xanthine oxidase (XO) inhibitor, allopurinol (ALP), on cardiac dysfunction, oxidative-nitrosative stress, apoptosis, poly(ADP-ribose) polymerase (PARP) activity and fibrosis associated with diabetic cardiomyopathy in mice. Diabetes was induced in C57/BL6 mice by injection of streptozotocin. Control and diabetic animals were treated with ALP or placebo. Left ventricular systolic and diastolic functions were measured by pressure-volume system 10 weeks after established diabetes. Myocardial XO, p22(phox), p40(phox), p47(phox), gp91(phox), iNOS, eNOS mRNA and/or protein levels, ROS and nitrotyrosine (NT) formation, caspase3/7 and PARP activity, chromatin fragmentation and various markers of fibrosis (collagen-1, TGF-beta, CTGF, fibronectin) were measured using molecular biology and biochemistry methods or immunohistochemistry. Diabetes was characterized by increased myocardial, liver and serum XO activity (but not expression), increased myocardial ROS generation, p22(phox), p40(phox), p47(phox), p91(phox) mRNA expression, iNOS (but not eNOS) expression, NT generation, caspase 3/7 and PARP activity/expression, chromatin fragmentation and fibrosis (enhanced accumulation of collagen, TGF-beta, CTGF and fibronectin), and declined systolic and diastolic myocardial performance. ALP attenuated the diabetes-induced increased myocardial, liver and serum XO activity, myocardial ROS, NT generation, iNOS expression, apoptosis, PARP activity and fibrosis, which were accompanied by improved systolic (measured by the evaluation of both load-dependent and independent indices of myocardial contractility) and diastolic performance of the hearts of treated diabetic animals. Thus, XO inhibition with ALP improves type 1 diabetes-induced cardiac dysfunction by decreasing oxidative/nitrosative stress and fibrosis, which may have important clinical implications for the treatment and prevention of diabetic cardiomyopathy and vascular dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-catenin is a component of the intercalated disc in cardiomyocytes, but can also be involved in signalling and activation of gene transcription. We wanted to determine how long-term changes in beta-catenin expression levels would affect mature cardiomyocytes. Conditional transgenic mice that either lacked beta-catenin or that expressed a non-degradable form of beta-catenin in the adult ventricle were created. While mice lacking beta-catenin in the ventricle do not have an overt phenotype, mice expressing a non-degradable form develop dilated cardiomyopathy and do not survive beyond 5 months. A detailed analysis could reveal that this phenotype is correlated with a distinct localisation of beta-catenin in adult cardiomyocytes, which cannot be detected in the nucleus, no matter how much protein is present. Our report is the first study that addresses long-term effects of either the absence of beta-catenin or its stabilisation on ventricular cardiomyocytes and it suggests that beta-catenin's role in the nucleus may be of little significance in the healthy adult heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To examine whether percutaneous alcohol septal ablation affects coronary flow reserve (CFR) in patients with hypertrophic cardiomyopathy (HCM). METHODS: CFR was measured immediately before and after septal ablation in patients with symptomatic obstructive HCM. CFR was also obtained in normal subjects (NL) for comparison. RESULTS: Patients with HCM (n = 11), compared with NL (n = 22), had a lower mean (SD) baseline CFR (1.96 (0.5) vs 3.0 (0.7), p<0.001), a lower coronary resistance (1.04 (0.45) vs 3.0 (2.6), p = 0.002), a higher coronary diastolic/systolic velocity ratio (DSVR; 5.1 (3.0) vs 1.8 (0.5), p = 0.04) and a lower hyperaemic coronary flow per left ventricular (LV) mass (0.73 (0.4) vs 1.1 (0.6) ml/min/g, p = 0.007). Septal ablation in the HCM group (n = 7) reduced the outflow tract gradient but not the left atrial or LV diastolic pressures. Ablation resulted in immediate normalisation of CFR (to 3.1 (1), p = 0.01) and DSVR (to 1.9 (0.8), p = 0.09) and an increase in coronary resistance (to 1.91 (0.6), p = 0.02). This was probably related to an improvement in the systolic coronary flow. CONCLUSIONS: This study demonstrates that successful septal ablation in patients with symptomatic HCM results in immediate improvement in CFR, which is reduced in HCM partly because of the increased systolic contraction load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: The aim of this case report was to show the importance to research metabolic etiology, especially a carnitine deficiency in dilated cardiomyopathy of children. CASE REPORT: A three years old Togolese child presented muscular hypotonia, dyspnea. Examination showed left galop murmur and systolic murmur 2/6. Chest X-ray showed cardiomegaly (CTI: 0.66), electrocardiogram, a sinusal rythm, left ventricle hypertrophy and T wave abnormalities. Echocardiogram showed a markedly dilated left ventricle with reduced systolic function (EF: 0.43; reference range 0.55-0.80) and moderate mitral regurgitation. The inflammatory signs where negatives. Magnetic resonance imaging don't show signs of ischemic or myocarditis. The levels of free and total plasmatic carnitine decreased: 3μmol/L (N: 18-48μmol/L) and 5μmol/l (N: 29-70μmol/L) respectively. Mutation analysis of the gene SLC22A5 confirms the diagnosis of primary systemic carnitine deficiency. Treatment with oral carnitine was started at 200mg/kg per day. Within three weeks of treatment, we observed the decrease of all symptoms and the left ventricular size and function normalized (EF: 0.62). He has now been on oral carnitine for live. CONCLUSION: Primary carnitine deficiency is a cause of dilated cardiomyopathy in child. It must systematically be suspected when a child presents a primitive cardiomyopathy. The treatment with oral carnitine for live is simple, with excellent prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1β, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, β-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Key factors of Fast Track (FT) programs are fluid restriction and epidural analgesia (EDA). We aimed to challenge the preconception that the combination of fluid restriction and EDA might induce hypotension and renal dysfunction. METHODS: A recent randomized trial (NCT00556790) showed reduced complications after colectomy in FT patients compared with standard care (SC). Patients with an effective EDA were compared with regard to hemodynamics and renal function. RESULTS: 61/76 FT patients and 59/75 patients in the SC group had an effective EDA. Both groups were comparable regarding demographics and surgery-related characteristics. FT patients received significantly less i.v. fluids intraoperatively (1900 mL [range 1100-4100] versus 2900 mL [1600-5900], P < 0.0001) and postoperatively (700 mL [400-1500] versus 2300 mL [1800-3800], P < 0.0001). Intraoperatively, 30 FT compared with 19 SC patients needed colloids or vasopressors, but this was statistically not significant (P = 0.066). Postoperative requirements were low in both groups (3 versus 5 patients; P = 0.487). Pre- and postoperative values for creatinine, hematocrit, sodium, and potassium were similar, and no patient developed renal dysfunction in either group. Only one of 82 patients having an EDA without a bladder catheter had urinary retention. Overall, FT patients had fewer postoperative complications (6 versus 20 patients; P = 0.002) and a shorter median hospital stay (5 [2-30] versus 9 d [6-30]; P< 0.0001) compared with the SC group. CONCLUSIONS: Fluid restriction and EDA in FT programs are not associated with clinically relevant hemodynamic instability or renal dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The M-band is the prominent cytoskeletal structure that cross-links the myosin and titin filaments in the middle of the sarcomere. To investigate M-band alterations in heart disease, we analyzed the expression of its main components, proteins of the myomesin family, in mouse and human cardiomyopathy. Cardiac function was assessed by echocardiography and compared to the expression pattern of myomesins evaluated with RT-PCR, Western blot, and immunofluorescent analysis. Disease progression in transgenic mouse models for dilated cardiomyopathy (DCM) was accompanied by specific M-band alterations. The dominant splice isoform in the embryonic heart, EH-myomesin, was strongly up-regulated in the failing heart and correlated with a decrease in cardiac function (R = -0.86). In addition, we have analyzed the expressions of myomesins in human myocardial biopsies (N = 40) obtained from DCM patients, DCM patients supported by a left ventricular assist device (LVAD), hypertrophic cardiomyopathy (HCM) patients and controls. Quantitative RT-PCR revealed that the EH-myomesin isoform was up-regulated 41-fold (P < 0.001) in the DCM patients compared to control patients. In DCM hearts supported by a LVAD and HCM hearts, the EH-myomesin expression was comparable to controls. Immunofluorescent analyses indicate that EH-myomesin was enhanced in a cell-specific manner, leading to a higher heterogeneity of the myocytes' cytoskeleton through the myocardial wall. We suggest that the up-regulation of EH-myomesin denotes an adaptive remodeling of the sarcomere cytoskeleton in the dilated heart and might serve as a marker for DCM in mouse and human myocardium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.