958 resultados para Resin-modified glass ionomer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vitro study evaluated the demineralization around restorations class V made on the buccal and lingual surfaces of teeth when using different restorative materials. Thirty extracted teeth were randomly divided into 3 groups (n=10) according to the restorative material: Group I - Fuji II LC (GC America Inc., Alsip, Illinois, USA), Group II - Tetric (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Group III - Chelon Fil (3M/ESPE., Seefeld, Germany). The teeth were submitted to a pH-cycling model associated to a thermocycling model. Sections were made and the specimens were analyzed under a polarized light microscopy as for the presence of demineralization. Measurements were performed and the results were subjected to statistical analysis using Anova and Tukey´s Test (α=0.05). Mean values of demineralization depth (µm) according to each positions showed that the demineralization was significantly reduced when Chelon Fil (Group III) was used for all depths, when compared to fluoridated resin materials. Also, it was verified that non-fluoridated resin material, composite resin Tetric, had the lowest inhibitory effect on the development of demineralization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The use of external sources of energy may accelerate the setting rate of glass ionomer cements (GICs) allowing better initial mechanical properties. Aim. To investigate the influence of ultrasound and halogen light on the microleakage and hardness of enamel adjacent to GIC restorations, after artificial caries challenge. Design. Cavities were prepared in 60 primary canines, restored with GIC, and randomly distributed into three groups: control group (CG), light group (LG) - irradiation with a halogen lightcuring unit for 60 s, and ultrasonic group (UG) application of ultrasonic scaler device for 15 s. All specimens were then submitted to a cariogenic challenge in a pH cycling model. Half of sample in each group were immersed in methylene blue for 4 h and sectioned for dye penetration analysis. The remaining specimens were submitted to Knoop cross-sectional microhardness assessments, and mineral changes were calculated for adjacent enamel. Results. Data were compared using Kruskal-Wallis test and two- way ANOVA with 5% significance. Higher dye penetration was observed for the UG (P < 0.01). No significant mineral changes were observed between groups (P = 0.844). Conclusion. The use of halogen light- curing unit does not seem to interfere with the properties of GICs, whereas the use of ultrasound can affect its marginal sealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the push-out bond strength of fiberglass resin reinforced bonded with five ionomer cements. Also, the interface between cement and dentin was inspected by means of SEM. Fifty human canines were chose after rigorous scrutiny process, endodontically treated and divided randomly into five groups (n = 3) according to cement tested: Group I – Ionoseal (VOCO), Group II – Fugi I (GC), Group III – Fugi II Improved (GC), Group IV – Rely X Luting 2 (3M ESPE), Group V – Ketac Cem (3M ESPE). The post-space was prepared to receive a fiberglass post, which was tried before cementation process. No dentin or post surface pretreatment was carried out. After post bonding, all roots were cross-sectioned to acquire 3 thin-slices (1 mm) from three specific regions of tooth (cervical, medium and apical). A Universal test machine was used to carry out the push-out test with cross-head speed set to 0.5mm/mim. All failed specimens were observed under optical microscope to identify the failure mode. Representative specimens from each group was inspected under SEM. The data were analyzed by Kolmogorov-Smirnov and Levene’s tests and by two-way ANOVA, and Tukey’s port hoc test at a significance level of 5%. It was compared the images obtained for determination of types of failures more occurred in different levels. SEM inspection displayed that all cements filled the space between post and dentin, however, some imperfections such bubles and voids were noticed in all groups in some degree of extension. The push-out bond strength showed that cement Ketac Cem presented significant higher results when compared to the Ionoseal (P = 0.02). There were no statistical significant differences among other cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES The shear bond strength of three glass ionomer cements (GIC) to enamel and dentine was evaluated. STUDY DESIGN Sound permanent human molars (n=12) were grinded perpendicular to their axial axes, exposing smooth, flat enamel and dentine surfaces. The teeth were embedded in resin and conditioned with polyacrylic acid (25%; 10s). Twenty four specimens of each GIC: Fuji IX (FJ-GC), Ketac Molar Easymix (KM-3M ESPE) and Maxxion (MX-FGM) were prepared according to the Atraumatic Restorative Treatment (ART) (12 enamel and 12 dentine), in a bonding area of 4.91 mm² and immersed in water (37°C, 24h). The shear bond strength was tested in a universal testing machine. Non-parametric statistical tests (Friedman and post-hoc Wilcoxon Signed Ranks) were carried out (p=0.05). RESULTS The mean (±sd) of shear bond strength (MPa), on enamel and dentine, were: KM (6.4±1.4 and 7.6±1.5), FJ (5.9±1.5 and 6.0±1.9) and MX (4.2±1.5 and 4.9±1.5), respectively. There was a statistically significant difference between the GICs in both groups: enamel (p=0.004) and dentine (p=0.002). The lowest shear bond value for enamel was with MX and the highest for dentine was KM (p<0.05). CONCLUSION It is concluded that KM has the best adhesion to both enamel and dentine, followed by FJ and MX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water loss behaviour of a clinical glass-ionomer dental cement has been studied with and without the addition of alkali metal chlorides. Dehydrating conditions were provided by placing specimens in a desiccator over concentrated sulphuric acid. Cements were prepared using either pure water or an aqueous solution of metal chloride (LiCl, NaCl, KCl) at 1.0 mol/dm(3). In addition, NaCl at 0.5 mol/dm(3) was also used to fabricate cements. Disc-shaped specimens of size 6 mm diameter x 2 mm thickness were made, six performulation, and cured at 37 degrees C for 1 hour They were then exposed to desiccating conditions, and the mass measured at regular intervals. All formulations were found to lose water in a diffusion process that equilibrated after approximately 3 weeks. Diffusion coefficients ranged from 2.27 (0.13) x 10(9) with no additive to 1.85 (0.07) x 10(9) m(2)/s with 1.0 mol/dm(3) KCl. For the salts, diffusion coefficients decreased in the order LiCl > NaCl > KCl. There was no statistically significant difference between the diffusion coefficients for 1.0 and 0.5 mol/dm(3) NaCl. For all salts at 1.0 mol/dm(3) and also additive-free cements, equilibrium losses were, with statistical limits, the same, ranging from 6.23 to 6.34%. On the other hand, 0.5 mol/dm(3) NaCl lost significantly more water 7.05%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was determine whether bonding of glass-ionomer cements to non-carious dentine differed from that to carious dentine. Five commercial cements were used, namely Fuji IX GP, Fuji IX capsulated, Fuji IX Fast capsulated (all GC, Japan), Ketac-Molar and Ketac-Molar Aplicap (both 3M-ESPE, Germany). Following conditioning of the substrate with 10% poly (acrylic acid) for 10 s, sets of 10 samples of the cements were bonded to prepared teeth that had been removed for orthodontic reasons. The teeth used had either sound dentine or sclerotic dentine. Shear bond strengths were determined following 24 h storage. For the auto-mixed cements, shear bond strength to sound dentine was found not to differ statistically from shear bond strength to sclerotic dentine whereas for hand-mixed cements, shear bond to sound dentine was found to be higher than to carious dentine (to at least p < 0.05). This shows that the chemical effects arising from interactions of glass-ionomer cements with the mineral phase of the tooth are the most important in developing strong bonds, at least in the shorter term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cylindrical specimens (6 mm high x 4 mm diameter) of the endodontic grade glass-ionomer (Ketac Endo) were exposed to various media for 1 week, after which changes in their mass, pH of storage medium, and ion release were determined. In water, this cement was shown to release reasonable amounts of sodium, aluminium and silicon, together with smaller amounts of calcium and phosphorus, as well as taking up 2.41% by mass of water. A comparison with the restorative grade materials (Ketac Molar, ex 3M ESPE and Fuji IX, ex GC) showed both ion release and water uptake to be greater. All three cements shifted pH from 7 to around 6 with no significant differences between them. Other storage media were found to alter the pattern of ion release. Lactic acid caused an increase, whereas both saturated calcium hydroxide and 0.6% sodium hypochlorite, caused decreases. This suppression of ion-release may be significant clinically. Aluminium is the most potentially hazardous of the ions involved but amounts released were low compared with levels previously reported to show biological damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: This paper reports a study of the water loss behaviour of two commercial glass-ionomer cements coated with varnishes. METHODS: For each cement (Fuji IX Fast or Chemflex), specimens (6mmdiameterx2mm depth) were prepared and cured for 10min at 37 degrees C. They were exposed to a desiccating environment over H(2)SO(4) either uncoated or coated with the appropriate varnish (Fuji Varnish, a solvent-based lacquer, or Fuji Coat, a light-cured varnish). Four specimens were prepared for each material. They were weighed at hourly intervals for 6h, daily for up to 5 days, then weekly thereafter until equilibration. RESULTS: Unlike the uncoated specimens, water loss from varnished cements was not Fickian, but followed the form: mass loss=A/t+B, where t is time, A and B are constants specific to each cement/varnish combination. A varied from 1.22 to 1.30 (mean 1.26, standard deviation 0.04), whereas B varied from 1.54 to 2.09 (mean -1.83, standard deviation 0.29). At equilibrium, varnished specimens lost much less water than unvarnished ones (p>0.01) but there was no significant difference between the solvent-based and the light-cured varnishes. SIGNIFICANCE: Varnishes protect immature glass-ionomer cements from drying out by altering the mechanism of water loss. This slows the rate of drying but does not necessarily change the total amount of water retained. It confirms that, in clinical use, glass-ionomer restoratives should be varnished to allow them to mature satisfactorily.