941 resultados para Resin bond


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate the microtensile bond strength (MTBS) of ceramic cemented to dentin varying the resin cement and ceramic shades.Materials and Methods: Two VITA VM7 ceramic shades (Base Dentine 0M1 and Base Dentine 5M3) were used. A spectrophotometer was used to determine the percentage translucency of ceramic (thickness: 2.5 mm). For the MTBS test, 80 molar dentin surfaces were etched and an adhesive was applied. Forty blocks (7.2 x 7.2 x 2.5 mm) of each ceramic shade were produced and the ceramic surface was etched (10% hydrofluoric acid) for 60 s, followed by the application of silane and resin cement (A3 yellow and transparent). The blocks were cemented to dentin using either A3 or transparent cement. Specimens were photoactivated for 20 s or 40 s, stored in distilled water (37 degrees C/24 h), and sectioned. Eight experimental groups were obtained (n = 10). Specimens were tested for MTSB using a universal testing machine. Data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha <= 0.05).Results: The percentage translucency of 0M1 and 5M3 ceramics were 10.06 (+/- 0.25)% and 1.34 (+/- 0.02)%, respectively. The lowest MTBS was observed for the ceramic shade 5M3. For the 0M1 ceramic, the A3 yellow cement that was photocured for 20 s exhibited the lowest MTBS, while the transparent cement that was photocured for 40 s presented the highest MTBS.Conclusions: For the 2.5-mm-thick 5M3 ceramic restorations, the MTBS of ceramic cemented to dentin significantly increased. The dual-curing cement Variolink II photocured for 40 s is not recommended for cementing the Base Dentine 5M3 feldspathic ceramic to dentin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon.Materials and Methods: Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-mu m Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 mu m) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 mu m aluminum trioxide particles coated with silica (30 mu m SiO2) + core + veneer: silane; group 4: core: 30 mu m SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5 degrees C-55 degrees C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (alpha = 0.05).Results: Group 3 demonstrated significantly higher values (MPa) (8.6 +/- 2.7) than those of the other groups (3.2 +/- 3.1, 3.2 +/- 3, and 3.1 +/- 3.5 for groups 1, 2, and 4, respectively) (p < 0.001). All groups showed exclusively adhesive failure between the repair resin and the core zirconia. The incidence of cohesive failure in the ceramic was highest in group 3 (8 out of 10) compared to the other groups (0/10, 2/10, and 2/10, in groups 1, 2, and 4, respectively). SEM images showed that air abrasion on the zirconia core only also impinged on the veneering ceramic where the etching pattern was affected.Conclusion: Etching the veneer ceramic with HF gel and silica coating of the zirconia core followed by silanization of both substrates could be advised for the repair of the zirconia core / veneering ceramic complex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study assessed the effect of different etching durations of feldspathic ceramic with hydrofluoric acid (HF) and ultrasonic cleaning of the etched ceramic surface on the microtensile bond strength stability of resin to a feldspathic ceramic. The research hypotheses investigated were: (1) different etching times would not affect the adhesion resistance and (2) ultrasonic cleaning would improve the adhesion. Ceramic blocks (6 x 6 x 5 mm) (N = 48) were obtained. The cementations surfaces were duplicated in resin composite. The six study groups (n = 8) were: G1Etching with 10% aqueous HF (30 s) + silane; G 210% HF (1 min) + silane; G3-10% HF (2 min) + silane; G4-10% HF (30 s) + ultrasonic cleaning (4 min) in distilled water + silane; G5-10% HF (1 min) + ultrasonic cleaning + silane; G6-10% HF (2 min) ultrasonic cleaning + silane. The cemented blocks were sectioned into microbars for the microtensile test. The etching duration did not create significant difference among the groups (p = .156) but significant influence of ultrasonic cleaning was observed (p = .001) (Two-way ANOVA and Tukey's test, p > 0.05). All the groups after ultrasonic cleaning presented higher bond strength (19.38-20.08 MPa) when compared with the groups without ultrasonic cleaning (16.2117.75 MPa). The bond strength between feldspathic ceramic and resin cement was not affected by different etching durations using HF. Ultrasonic cleaning increased the bond strength between ceramic surface and resin cement, regardless of the etching duration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this in vitro study was to evaluate the effect of air-abrasion/zirconia sintering order on the yttria partially stabilized tetragonal zirconia polycrystal (Y-TZP) surface characterization (roughness, morphology, and phase transformation), flexural strength (FS), and shear bond strength (SBS) to a resin cement. Y-TZP specimens were air abraded with 50-μm Al2O3 particles after (AS), before (BS), or before and after zirconia sintering (BAS). For roughness (Ra), 30 block specimens (12×12×3.0 mm; n=10) had their surfaces analyzed by a profilometer. Next, on the air-abraded surfaces of these specimens, composite resin discs (n=30) were bonded with RelyX ARC. The bonded specimens were stored for 24 hours in distilled water at 37°C before shear testing. Failure mode was determined with a stereomicroscope (20×). The surface morphology (n=2) was evaluated by SEM (500×). For the four-point flexural strength test (EMIC DL2000), 39 bar-shaped specimens (20×4.0×1.2 mm; n=13) were air abraded according to the three conditions proposed, and an additional group (nonabraded) was evaluated (n=13). The quantitative analysis of phase transformation (n=1) was completed with Rietveld refinement with X-ray diffraction data. Ra (μm) and SBS (MPa) data were analyzed by one-way analysis of variance (ANOVA) and the Tukey test (α=0.05). Pearson correlation analysis was used to determine if there was a correlation between roughness and SBS. For FS (MPa) data, one-way ANOVA and the Dunnett C-test (α=0.05) were used. The air-abrasion/zirconia sintering order influenced significantly (p<0.001) Ra, SBS, and FS. The BS and AS groups presented the highest (1.3 μm) and the lowest (0.7 μm) Ra. The highest SBS (7.0 MPa) was exhibited by the BAS group, followed by the AS group (5.4 MPa) and finally by the BS group (2.6 MPa). All groups presented 100% adhesive failure. A weak correlation (r=−0.45, p<0.05) was found between roughness and SBS. The air-abrasion/zirconia sintering order provided differences in the surface morphology. The nonabraded (926.8 MPa) and BS (816.3 MPa) groups exhibited statistically similar FS values but lower values than the AS (1249.1 MPa) and BAS (1181.4 MPa) groups, with no significant difference between them. The nonabraded, AS, BS, and BAS groups exhibited, respectively, percentages of monoclinic phase of 0.0 wt%, 12.2 wt%, 0.0 wt%, and 8.6 wt%. The rougher surface provided by the air-abrasion before zirconia sintering may have impaired the bonding with the resin cement. The morphological patterns were consistent with the surface roughness. Considering the short-term SBS and FS, the BAS group exhibited the best performance. Air abrasion, regardless of its performance order, provides tetragonal to monoclinic transformation, while sintering tends to zero the monoclinic phase content.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of the insertion technique for resin cement and mechanical cycling on the bond strength between fiber posts and root dentin.Materials and Methods: Sixty-four single-rooted bovine teeth were endodontically prepared to receive glass-fiber posts. The insertion of cement into the root canal was performed using one of the following techniques: POS, insertion with the post; LEN, the use of a lentulo-type drill; EXP, insertion with a straight-tip explorer; or CEN, the use of a Centrix syringe. Half of the specimens were mechanically cycled. All specimens were sectioned into slices of 1.8 mm for the push-out test and 0.5 mm for analysis of the cement layer quality.Results: The insertion technique affected the interaction between factors (bond strength and mechanical cycling; p < 0.0001). Insertion of the Centrix syringe after mechanical cycling showed the highest bond values (13.6 +/- 3.2 MPa). Group-to-group comparisons for baseline and cycled conditions indicated that mechanical cycling significantly influenced the bond strength (p < 0.0001) of the POS and CEN groups. The quality of the cement layer did not differ between the techniques when evaluated in the middle (p = 0.0612) and cervical (p = 0.1119) regions, but did differ in the apical region (p = 0.0097), where the CEN group had better layer quality for the two conditions tested (baseline and cycled).Conclusion: The use of the Centrix syringe improved the homogeneity of the cement layer, reducing the defects in the layer and increasing adhesive strength values to dentin, even after mechanical cycling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effect of thermocycling on the bond strength between Procera AllCeram (Nobel-Biocare) and a resin cement (Panavia F, Kuraray CO). Nine ceramic blocks with dimensions of 5x6x6mm were conditioned at one face with Rocatec System (Espe). After, they were luted with Panavia F to composite resin blocks (Clearfil AP-X, Kuraray CO). The nine groups formed by ceramic, cement and composite resin were split up obtaining 75 samples with dimensions of 12x1x1mm and adhesive surface presenting 1mm2±0.1mm2 of area. The samples were divided into 3 groups (n=25): G1 - 14 days in distilled water at 37ºC; G2 – 6,000 cycles in water (5ºC - 55ºC – 30s); G3 – 12,000 cycles in water (5ºC - 55ºC – 30s). The samples were tested in a universal testing machine (EMIC) at a crosshead speed of 1mm/min. Data were analyzed by ANOVA and Tukey tests. The results indicated that mean values of rupture tension (MPa) of G1 (10.71 ± 3.54) did not differ statistically (p <5%) from G2 (9.01 ± 3.90), however there was statistical difference between G1 and G3 (7.28 ± 3.00). It was concluded that thermocycling significantly reduced the bond strength values when samples were submitted to 12,000 cycles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of self-adhesive and self-etching resin cements on the bond strength of nonmetallic posts in different root regions. Sixty single-rooted human teeth were decoronated, endodontically treated, post-space prepared, and divided into six groups. Glass-fiber (GF) posts (Exacto, Angelus) and fiber-reinforced composite (FRC) posts (EverStick, StickTeck) were cemented with self-adhesive resin cement (Breeze) (SA) (Pentral Clinical) and self-etching resin cement (Panavia-F) (SE) (Kuraray). Six 1-mm-thick rods were obtained from the cervical (C), middle (M), and apical (A) regions of the roots. The specimens were then subjected to microtensile testing in a special machine (BISCO; Schaumburg, IL, USA) at a crosshead speed of 0.5 mm/min. Microtensile bond strength data were analyzed with two-way ANOVA and Tukey's tests. Means (and SD) of the MPa were: GF/SA/C: 14.32 (2.84), GF/SA/M: 10.69 (2.72), GF/SA/A: 6.77 (2.17), GF/SE/C: 11.56 (4.13), GF/SE/M: 6.49 (2.54), GF/SE/A: 3.60 (1.29), FRC/SA/C: 16.89 (2.66), FRC/SA/M: 13.18 (2.19), FRC/SA/A: 8.45 (1.77), FRC/SE/C: 13.69 (3.26), FRC/SE/M: 9.58 (2.23), FRC/SE/A: 5.62 (2.12). The difference among the regions was statistically significant for all groups (p < 0.05). The self-adhesive resin cement showed better results than the self-etching resin cement when compared to each post (p < 0.05). No statistically significant differences in bond strengths of the resin cements when comparable to each post (p > 0.05). The bond strength values were significantly affected by the resin cement and the highest values were found for self-adhesive resin cement.