843 resultados para Reputation mechanisms
Resumo:
The beta -amino acid, taurine, is a full agonist of the human glycine receptor al subunit when recombinantly expressed in a mammalian (HEK293) cell line, but a partial agonist of the same receptor when expressed in Xenopus oocytes. Several residues in the Ala101-Thr112 domain have previously been identified as determinants of beta -amino acid binding and gating mechanisms in Xenopus oocyte-expressed receptors. The present study used the substituted cysteine accessibility method to investigate the role of this domain in controlling taurine-specific binding and gating mechanisms of glycine receptors recombinantly expressed in mammalian cells. Asn102 and Glu103 are identified as taurine and glycine binding sites, whereas Ala101 is eliminated as a possible binding site. The N102C mutation also abolished the antagonistic actions of taurine, indicating that this site does not discriminate between the putative agonist- and antagonist-bound conformations of beta -amino acids. The effects of mutations from Lys104-Thr112 indicate that the mechanism by which this domain controls beta -amino acid-specific binding and gating processes differs substantially depending on whether the receptor is expressed in mammalian cells or Xenopus oocytes. Thr112 is the only domain element in mammalian cell-expressed GlyRs which was demonstrated to discriminate between glycine and taurine.
Resumo:
The neuropathological changes associated with Huntington's disease (HD) are most marked in the head of the caudate nucleus and, to a lesser extent, in the putamen and globus pallidus, suggesting that at least part of the language impairments found in patients with HD may result from non-thalamic subcortical (NTS) pathology. The present study aimed to test the hypothesis that a signature profile of impaired language functions is found in patients who have sustained damage to the non-thalamic subcortex, either focally induced or resulting from neurodegenerative pathology. The language abilities of a group of patients with Huntington's disease (n=13) were compared with those of an age- and education-matched group of patients with chronic NTS lesions following stroke (n=13) and a non-neurologically impaired control group (n=13). The three groups were compared on language tasks that assessed both primary and more complex language abilities. The primary language battery consisted of The Western Aphasia Battery and The Boston Naming Test, whilst the more complex cognitive-linguistic battery employed selected subtests from The Test of Language Competence-Expanded, The Test of Word Knowledge and The Word Test-Revised. On many of the tests of primary language function from the Western Aphasia Battery, both the HD and NTS participants performed in a similar manner to the control participants. The language performances of the HD participants were significantly more impaired (p<0.05 using modified Bonferroni adjustments) than the control group, however, on various lexico-semantic tasks (e. g. the Boston Naming Test and providing definitions), on both single-word and sentence-level generative tasks (e. g. category fluency and formulating sentences), and on tasks which required interpretation of ambiguous, figurative and inferential meaning. The difficulties that patients with HD experienced with tasks assessing complex language abilities were strikingly similar, both qualitatively and quantitatively, to the language profile produced by NTS participants. The results provide evidence to suggest that a signature language profile is associated with damage to the non-thalamic subcortex resulting from either focal neurological insult or a degenerative disease.
Propagation of nonstationary curved and stretched premixed flames with multistep reaction mechanisms
Resumo:
The propagation speed of a thin premixed flame disturbed by an unsteady fluid flow of a larger scale is considered. The flame may also have a general shape but the reaction zone is assumed to be thin compared to the flame thickness. Unlike in preceding publications, the presented asymptotic analysis is performed for a general multistep reaction mechanism and, at the same time, the flame front is curved by the fluid flow. The resulting equations define the propagation speed of disturbed flames in terms of the properties of undisturbed planar flames and the flame stretch. Special attention is paid to the near-equidiffusion limit. In this case, the flame propagation speed is shown to depend on the effective Zeldovich number Z(f) , and the flame stretch. Unlike the conventional Zeldovich number, the effective Zeldovich number is not necessarily linked directly to the activation energies of the reactions. Several examples of determining the effective Zeldovich number for reduced combustion mechanisms are given while, for realistic reactions, the effective Zeldovich number is determined from experiments. Another feature of the present approach is represented by the relatively simple asymptotic technique based on the adaptive generalized curvilinear system of coordinates attached to the flame (i.e., intrinsic disturbed flame equations [IDFE]).
Resumo:
Available evidence suggests that there are at least two locations for dormancy mechanisms in primary dormant seeds: mechanisms based within the embryo covering structures, and mechanisms based within the embryo. Mechanisms within the covering structures may involve mechanical, permeability and chemical barriers to germination. Mechanisms within the embryo may involve the expression of certain genes, levels of certain plant growth regulators, the activity of important respiratory pathways or the mobilisation and utilisation of food reserves. In addition, some embryos may be too immature to germinate immediately and must undergo a further growth phase before germination is possible. An individual species could have one or several of these various dormancy mechanisms and these mechanisms need to be understood when selecting treatments to overcome dormancy. The way in which certain dormancy breaking agents are thought to work is discussed and practical applications of such agents in field situations are explained.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Mechanisms and diversity of resistance to sorghum midge, Stenodiplosis sorghicola in Sorghum bicolor
Resumo:
Sorghum midge, Stenodiplosis sorghicola (Coquillett) is the most important pest of grain sorghum worldwide, and plant resistance is an important component for the control of this pest. To identify sorghum genotypes with diverse mechanisms of resistance to sorghum midge, we studied oviposition, larval survival, and midge damage in 27 sorghum midge-resistant genotypes, and a susceptible check under greenhouse conditions. Observations were also recorded on floral characteristics and compensation in grain mass. Of the 28 sorghum genotypes tested, 19 showed high levels of antixenosis to oviposition as a component of resistance, and had
Resumo:
Almost 50 years after the first sighting of small pits that covered the surface of mammalian cells, investigators are now getting to grips with the detailed workings of these enigmatic structures that we now know as caveolae.
Resumo:
Purinergic stimulation of airway epithelial cells induces Cl- secretion and modulates Na+ absorption by an unknown mechanism. To gain insight into this mechanism, we used a perfused micro-Ussing chamber to assess transepithelial voltage (V-te) and amiloride-sensitive short-circuit current (Isc-Amil) in mouse trachea. Exposure to apical ATP or UTP (each 100 mumol/l) caused a large initial increase in lumen negative V-te and I-sc corresponding to a transient Cl- secretion, while basolateral application of ATP/UTP induced only a small secretory response. Luminal, but not basolateral, application of nucleotides was followed by a sustained and reversible inhibition of Isc-Amil that was independent of extracellular Ca2+ or activation of protein kinase C and was not induced by carbachol (100 mumol/l) or the Ca2+ ionophore ionomycin (1 mumol/l). Removal of extracellular Cl- or exposure to 200 muM DIDS reduced UTP-mediated inhibition of Isc-Amil Substantially. The phospholipase inhibitor U73122 (10 mumol/l) and pertussis toxin (PTX 200 ng/ml) both attenuated UTP-induced Cl- secretion and inhibition of Isc-Amil. Taken together, these data imply a contribution of Cl- conductance and PTX-sensitive G proteins to nucleotide-dependent inhibition of the amiloride-sensitive Na+ current in the mouse trachea.
Resumo:
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.
Resumo:
The synaptic conductance of the On-Off direction-selective ganglion cells was measured during visual stimulation to determine whether the direction selectivity is a property of the circuitry presynaptic to the ganglion cells or is generated by postsynaptic interaction of excitatory and inhibitory inputs. Three synaptic asymmetries were identified that contribute to the generation of direction-selective responses: (1) a presynaptic mechanism producing stronger excitation in the preferred direction, (2) a presynaptic mechanism producing stronger inhibition in the opposite direction, and (3) postsynaptic interaction of excitation with spatially offset inhibition. Although the on- and off-responses showed the same directional tuning, the off-response was generated by all three mechanisms, whereas the on- response was generated primarily by the two presynaptic mechanisms. The results indicate that, within a single neuron, different strategies are used within distinct dendritic arbors to accomplish the same neural computation.
Resumo:
Clathrin-coated pits and caveolae are two of the most recognizable features of the plasma membrane of mammalian cells. While our understanding of the machinery regulating and driving clathrin-coated pit-mediated endocytosis has progressed dramatically, including the elucidation of the structure of individual components and partial in vitro reconstitution, the role of caveolae as alternative endocytic carriers still remains elusive 50 years after their discovery. However, recent work has started to provide new insights into endocytosis by caveolae and into apparently related pathways involving lipid raft domains. These pathways, distinguished by their exquisite sensitivity to cholesterol-sequestering agents, can involve caveolae but also exist in cells devoid of caveolins and caveolae. This review examines the current evidence for the involvement of rafts and caveolae in endocytosis and the molecular players involved in their regulation.
Resumo:
Background The reduction of exercise capacity because of fatigue and dyspnea in patients with heart failure can be improved with exercise training. We sought to examine the mechanisms of exercise training, as an adjunctive treatment strategy for patients with heart failure. Methods a reviewed the published data on the possible mechanisms of effect of exercise training in heart failure. Results Symptoms of heart failure may be explained on the basis of abnormal skeletal muscle perfusion and structure and endothelial function. Exercise training has been shown to engender changes in muscle structure and biochemistry and vascular function, although effects on cardiac function have not been detected uniformly and may require longer training periods. Conclusions A suitable, long-term program of exercise training may reverse unfavorable interactions among the heart, vessels, and skeletal muscles. These improvements may be preserved with an ongoing maintenance program.