964 resultados para Recycled Asphalt Pavement


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Longitudinal joint quality control/assurance is essential to the successful performance of asphalt pavements and it has received considerable amount of attention in recent years. The purpose of the study is to evaluate the level of compaction at the longitudinal joint and determine the effect of segregation on the longitudinal joint performance. Five paving projects with the use of traditional butt joint, infrared joint heater, edge restraint by milling and modified butt joint with the hot pinch longitudinal joint construction techniques were selected in this study. For each project, field density and permeability tests were made and cores from the pavement were obtained for in-lab permeability, air void and indirect tensile strength. Asphalt content and gradations were also obtained to determine the joint segregation. In general, this study finds that the minimum required joint density should be around 90.0% of the theoretical maximum density based on the AASHTO T166 method. The restrained-edge by milling and butt joint with the infrared heat treatment construction methods both create the joint density higher than this 90.0% limit. Traditional butt joint exhibits lower density and higher permeability than the criterion. In addition, all of the projects appear to have segregation at the longitudinal joint except for the edge-restraint by milling method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of polyolefins, neoprene, styrene-butadiene-styrene (SBS) block copolymers, styrene-butadiene rubber (SBR) latex, and hydrated lime on two asphalt cements were evaluated. Physical and chemical tests were performed on a total of 16 binder blends. Asphalt concrete mixes were prepared and tested with these modified binders and two aggregates (crushed limestone and gravel), each at three asphalt content levels. Properties evaluated on the modified binders (original and thin-film oven aged) included: viscosity at 25 deg C, 60 deg C and 135 deg C with capillary tube and cone-plate viscometer, penetration at 5 deg C and 25 deg C, softening point, force ductility, and elastic recovery at 10 deg C, dropping ball test, tensile strength, and toughness and tenacity tests at 25 deg C. From these the penetration index, the viscosity-temperature susceptibility, the penetration-viscosity number, the critical low-temperature, long loading-time stiffness, and the cracking temperature were calculated. In addition, the binders were studied with x-ray diffraction, reflected fluorescence microscopy, and high-performance liquid chromatography techniques. Engineering properties evaluated on the 72 asphalt concrete mixes containing additives included: Marshall stability and flow, Marshall stiffness, voids properties, resilient modulus, indirect tensile strength, permanent deformation (creep), and effects of moisture by vacuum-saturation and Lottman treatments. Pavement sections of varied asphalt concrete thicknesses and containing different additives were compared to control mixes in terms of structural responses and pavement lives for different subgrades. Although all of the additives tested improved at least one aspect of the binder/mixture properties, no additive was found to improve all the relevant binder/mixture properties at the same time. On the basis of overall considerations, the optimum beneficial effects can be expected when the additives are used in conjunction with softer grade asphalts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experience has shown that milling machines with carbide tipped teeth have the capability of profiling most asphalt concrete (ac) and portland cement concrete (pcc) pavements. Most standard milling operations today leave a very coarse, generally objectionable surface texture. This research utilized a Cedarapids Wirtgen 1900C mill modified by adding additional teeth. There were 411 teeth at a 5 millimeter transverse spacing (standard spacing is 15 mm) on a 6 ft. 4 in. long drum. The mill was used to profile and texture the surface of one ac and two pcc pavements. One year after the milling operation there is still some noticeable change in tire noise but the general appearance is good. The milling operation with the additional teeth provides an acceptable surface texture with improved Friction Numbers when compared to a nonmilled surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During 1986, the City of Des Moines placed an experimental asphaltic concrete overlay containing an ice-retardant additive (Verglimit) on Euclid Avenue (U.S. Highway 6). Verglimit is a chemical multi-component deicer which is added to the surface course of an asphalt overlay. The additive was uniformly distributed through the mix at the asphalt plant, which allows exposure of the particles as the finished surface wears under traffic. During a snowfall, the exposed particles attract and absorb moisture creating a deicing solution which dampens the pavement. The Verglimit additive used on this project cost $1,180 per metric ton. The Verglimit was added at a rate of 6.3% by weight, which was 126 pounds per ton, or $66.38 per ton of hot mix asphalt. The purchase of Verglimit additive was funded by the Iowa Department of Transportation through a research project recommended by the Highway Research Advisory Board. The pavement surface experienced severe wetting due to the additive's affinity for water immediately after the project was completed and during periods of high humidity. This wetting created slippery conditions both on the project itself and where vehicles tracked the additive. The only way to remove the slipperiness was by flushing the street with water. The ice-retardant overlay appears to perform as expected in reducing the adherence of ice and snow, especially at temperatures just below freezing. It performs better in light snowfalls than in heavy ones. The ice retardant overlay is effective in eliminating thin coatings of ice due to freezing drizzle or widespread frost. The accident data showed a reduction in the number of snow and ice related accidents but due to the low number of this type of accident the results are inconclusive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asphalt concrete resurfacing is the most commonly utilized rehabilitation practice used by the Iowa Department of Transportation. The major problem with asphalt concrete resurfacing is the reflective cracking from underlying cracks and joints in the portland cement concrete (PCC) pavement. Cracking and seating the PCC prior to an asphalt overlay was the construction method evaluated in this project. There was cracking and seating on portions of the project and portions were overlaid without this process. There were also different overlay thicknesses used. Comparisons of crack and seating to the normal overlay method and the different depths are compared in this report. Cracking and seating results in some structural loss, but does reduce the problem of reflection cracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most serious impediments to the continued successful use of hot-mix asphalt (HMA) pavements is rutting. The Iowa Department of Transportation has required 85% crushed particles and 75-blow Marshall mix design in an effort to prevent rutting on Interstate roadways. Relationships between the percent of crushed particles and resistance to rutting in pavement through the use of various laboratory test procedures must be developed. HMA mixtures were made with 0, 30, 60, 85, and 100% crushed gravel, crushed limestone, and crushed quartzite combined with uncrushed sand and gravel. These aggregate combinations were used with 4, 5, and 6% asphalt cement (ac). Laboratory tests included Marshall stability, resilient modulus, indirect tensile, and creep. A creep resistance factor (CRF) was developed to provide a single numeric value for creep test results. The CRF values relate well to the amount of crushed particles and the perceived resistance to rutting. The indirect tensile test is highly dependent on the ac with a small effect from the percent of crushed particles. The Marshall stability from 75-blow compaction relates well to the percent of crushed particles. The resilient modulus in some cases is highly affected by grade of ac.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1980, a Vanguard High Pressure Water Blaster capable of providing 10 gallons of water per minute at 2000 psi was purchased to evaluate water blasting as a crack cleaning method prior to crack filling on asphalt concrete pavements. Afer some iniital trials demonstrated its effectiveness of removing dirt, debris and vegetation, it was included in joint and crack maintenance research on Iowa 7 in Webster County. The objective of the research was to evaluate six crack preparation methods and seven "sealant" materials. The cleaning and sealing was performed in the spring of 1983. Visual evaluations of the performance were made in the fall of 1983 and spring of 1985. Compressed air and/or high pressure water did not adequately prepare cracks less than 3/8 inch wide. Routing or sawing was necessary to provide a sealant reservoir. The water blaster was more effective than compressed air in removing dirt, debris and vegetation but this did not yield significant improvement in sealant adhesion or longevity. Periodic crack filling is necessary on ACC surfaces throughout the remaining life of the pavement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An asphalt concrete (ACC) overlay is most often the rehabilitative effort used to maintain the serviceability of either an ACC or PCC pavement. The major problem in durability of this ACC overlay comes from reflective cracking. These cracks usually open, allowing water to enter the unsealed crack and strip the ACC in the overlay. The stripping of the ACC allows accelerated deterioration at the crack. Two engineering fabrics were evaluated in this project in order to determine their effectiveness in reducing reflective cracking. These two materials are: PavePrep, Contech Construction Products, Inc., and Pro-Guard, Phillips Fiber Corporation. A 4.2 km (2.6 mi) roadway in Audubon County was selected for the research project. The roadway was divided into eight test sections. Four of the test sections are conventional resurfacing. The other four sections are split between the two engineering fabrics (two Pro-Guard and two PavePrep). A 75 mm (3 in.) thick overlay was placed over the entire project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disposal of used tires has been a problem throughout the United States. The 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) requires the use of recycled rubber in asphalt concrete starting in FY94. A moratorium has delayed this requirement until FY95. The Iowa DOT has researched six projects using crumb rubber modifier in asphalt concrete using the wet process. This process involves using a blender-reactor to blend the asphalt cement and crumb rubber. Using the wet process the asphalt cement has to reach a hotter temperature, than is normally required, for reaction to occur. The wet process is also much more expensive than conventional asphalt. This research deals with using a dry process to incorporate crumb rubber into the asphalt concrete mix. The project was constructed by Western Engineering of Harlan, Iowa, on IA 37 between Earling, Iowa and US 59. It was completed in September 1993. Western Engineering used a double drum mixer to produce the crumb rubber modified asphalt concrete by the dry process. The production and construction went well with minor difficulty and the dry process is a less expensive procedure for producing crumb rubber modified asphalt concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stopping and turning maneuvers on high traffic volume asphalt cement concrete surfaced roads and streets often causes distortion of the pavement. Distortion may show up as excessive rutting in the wheel path, shoving of the pavement and/or rippling of the surface. Often times repeated corrective work such as cold milling or heater planing is required in these areas to maintain the pavement surface in a reasonable condition. In recent years polymer additives have been developed for asphalt cement concrete paving mixes that show promise in improving the inplace stability of the pavements. AC-13 (Styrelf 13) available from Bitucote Products Company, St. Louis, Missouri is an asphalt cement that has been modified by an additive to exhibit characteristics of very high stability in asphalt mixes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friction testing of pavements has been a continuing effort by the Iowa Department of Transportation since 1969. This report details results of tests of asphaltic concrete pavements on the primary and interstate road systems. Both sprinkle treated and non-sprinkle treated pavements placed between 1975 - 1985 are included. A total of 1785 miles representing 216 separate paving projects were examined. The effect of fog sealing sprinkle treated pavements was studied by testing friction levels before and after the application of the fog seals. Conclusions of the report are: 1. Current aggregate selection criteria for a.c. pavement surface courses provides adequate friction levels through 10 years and should remain effective through a 15 year design life. 2. Sprinkle treatment of pavements has, for the most part, provided macrotexture in the pavement surface as evidenced by smooth tire testing. 3. Fog sealing sprinkle treated pavements does not significantly alter the friction properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The asphalt concrete (AC) dynamic modulus (|E*|) is a key design parameter in mechanistic-based pavement design methodologies such as the American Association of State Highway and Transportation Officials (AASHTO) MEPDG/Pavement-ME Design. The objective of this feasibility study was to develop frameworks for predicting the AC |E*| master curve from falling weight deflectometer (FWD) deflection-time history data collected by the Iowa Department of Transportation (Iowa DOT). A neural networks (NN) methodology was developed based on a synthetically generated viscoelastic forward solutions database to predict AC relaxation modulus (E(t)) master curve coefficients from FWD deflection-time history data. According to the theory of viscoelasticity, if AC relaxation modulus, E(t), is known, |E*| can be calculated (and vice versa) through numerical inter-conversion procedures. Several case studies focusing on full-depth AC pavements were conducted to isolate potential backcalculation issues that are only related to the modulus master curve of the AC layer. For the proof-of-concept demonstration, a comprehensive full-depth AC analysis was carried out through 10,000 batch simulations using a viscoelastic forward analysis program. Anomalies were detected in the comprehensive raw synthetic database and were eliminated through imposition of certain constraints involving the sigmoid master curve coefficients. The surrogate forward modeling results showed that NNs are able to predict deflection-time histories from E(t) master curve coefficients and other layer properties very well. The NN inverse modeling results demonstrated the potential of NNs to backcalculate the E(t) master curve coefficients from single-drop FWD deflection-time history data, although the current prediction accuracies are not sufficient to recommend these models for practical implementation. Considering the complex nature of the problem investigated with many uncertainties involved, including the possible presence of dynamics during FWD testing (related to the presence and depth of stiff layer, inertial and wave propagation effects, etc.), the limitations of current FWD technology (integration errors, truncation issues, etc.), and the need for a rapid and simplified approach for routine implementation, future research recommendations have been provided making a strong case for an expanded research study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS system. A new pavement condition rating system that provides a consistent, unified approach in rating pavements in Iowa is being proposed. The proposed 100-scale system is based on five individual indices derived from specific distress data and pavement properties, and an overall pavement condition index, PCI-2, that combines individual indices using weighting factors. The different indices cover cracking, ride, rutting, faulting, and friction. The Cracking Index is formed by combining cracking data (transverse, longitudinal, wheel-path, and alligator cracking indices). Ride, rutting, and faulting indices utilize the International Roughness Index (IRI), rut depth, and fault height, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reflective cracking in hot mix asphalt (HMA) overlays has been a common cause of poor pavement performance in Iowa for many years. Reflective cracks commonly occur in HMA overlays when deteriorated portland cement concrete is paved over with HMA. This results in HMA pavement surfaces with poor ride quality and increased transportation maintenance costs. To delay the formation of cracks in HMA overlays, the Iowa Department of Transportation (Iowa DOT) has begun to implement a crack-relief interlayer mix design specification. The crack-relief interlayer is an asphalt-rich, highly flexible HMA that can resist cracking in high strain loading conditions. In this project, the field performance of an HMA overlay using a one inch interlayer was compared to a conventional HMA overlay without an interlayer. Both test sections were constructed on US 169 in Adel, Iowa as part of an Iowa DOT overlay project. The laboratory performance of the interlayer mix design was assessed for resistance to cracking from repeated strains by using the four-point bending beam apparatus. An HMA using a highly polymer modified binder was designed and shown to meet the laboratory performance test criteria. The field performance of the overlay with the interlayer exceeded the performance of the conventional overlay that did not have the interlayer. After one winter season, 29 percent less reflective cracking was measured in the pavement section with the interlayer than the pavement section without the interlayer. The level of cracking severity was also reduced by using the interlayer in the overlay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed.