998 resultados para Receptor de GABA-A
Resumo:
Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72–96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABAA (γ-aminobutyric acid type A) receptor subunits (decrease in γ2 and α1; increase in α5) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD67. In contrast, dl-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal.
Resumo:
We have simultaneously measured the expression of postsynaptic γ-aminobutyric acid type A (GABAA) receptor clusters and of presynaptic boutons in neonatal rat hippocampal cultures between days 1 and 30. GABAA receptors were labeled with antibodies recognizing the extracellular domains of β2/3 and γ2 subunits. Boutons were visualized by activity-dependent uptake of the styryl dye FM4-64, or by antibodies against the presynaptic vesicular protein SV2 or the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD). GABAA receptor clusters could be seen in living neurons already 6 h after culturing, much before presynaptic markers could be identified in nerve terminals. The densities of receptor clusters that contained the β2/3 subunits were constant between days 10 and 30 in culture, whereas γ2 subunit-containing clusters fluctuated and reached a maximum on day 20. SV2 and GAD staining could be measured from day 2 onwards. Clustering of GAD in presynaptic terminals and FM4-64 uptake were observed only at day 5 and afterward. SV2 staining and FM4-64 uptake increased in parallel between days 5 and 20 and remained constant thereafter. GAD-stained boutons were fewer than those labeled with other, less specific, presynaptic stains. They reached a maximum on day 20 and fell again toward day 30. Double labeling of GABAA receptors and of presynaptic boutons in neurons during differentiation showed that, even after 30 days in culture, large fractions of GABAA receptor clusters containing β2/3 and/or γ2 subunits remained extrasynaptic.
Resumo:
Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.
Resumo:
Ionotropic receptors for gamma-aminobutyric acid (GABA) are important to inhibitory neurotransmission in the mammalian retina, mediating GABAA and GABAC responses. In many species, these responses are blocked by the convulsant picrotoxinin (PTX), although the mechanism of block is not fully understood. In contrast, GABAC responses in the rat retina are extremely resistant to PTX. We hypothesized that this difference could be explained by molecular characterization of the receptors underlying the GABAC response. Here we report the cloning of two rat GABA receptor subunits, designated r rho 1 and r rho 2 after their previously identified human homologues. When coexpressed in Xenopus oocytes, r rho 1/r rho 2 heteromeric receptors mimicked PTX-resistant GABAC responses of the rat retina. PTX resistance is apparently conferred in native heteromeric receptors by r rho 2 subunits since homomeric r rho 1 receptors were sensitive to PTX; r rho 2 subunits alone were unable to form functional homomeric receptors. Site-directed mutagenesis confirmed that a single amino acid residue in the second membrane-spanning region (a methionine in r rho 2 in place of a threonine in r rho 1) is the predominant determinant of PTX resistance in the rat receptor. This study reveals not only the molecular mechanism underlying PTX blockade of GABA receptors but also the heteromeric nature of native receptors in the rat retina that underlie the PTX-resistant GABAC response.
Resumo:
The reduced progesterone metabolite tetrahydroprogesterone (3 alpha-hydroxy-5 alpha-pregnan-20-one; 3 alpha,5 alpha-THP) is a positive modulator of the gamma-aminobutyric acid type A (GABAA) receptor. Experiments performed in vitro with hypothalamic fragments have previously shown that GABA could modulate the release of gonadotropin-releasing hormone (GnRH). Using GT1-1 immortalized GnRH neurons, we investigated the role of GABAA receptor ligands, including 3 alpha,5 alpha-THP, on the release of GnRH. We first characterized the GABAA receptors expressed by these neurons. [3H]Muscimol, but not [3H]flunitrazepam, bound with high affinity to GT1-1 cell membranes (Kd = 10.9 +/- 0.3 nM; Bmax = 979 +/- 12 fmol/mg of protein), and [3H]muscimol binding was enhanced by 3 alpha,5 alpha-THP. mRNAs encoding the alpha 1 and beta 3 subunits of the GABAA receptor were detected by the reverse transcriptase polymerase chain reaction. In agreement with binding data, the benzodiazepine-binding gamma subunit mRNA was absent. GnRH release studies showed a dose-related stimulating action of muscimol. 3 alpha,5 alpha-THP not only modulated muscimol-induced secretion but also stimulated GnRH release when administered alone. Bicuculline and picrotoxin blocked the effects of 3 alpha,5 alpha-THP and muscimol. Finally, we observed that GT1-1 neurons convert progesterone to 3 alpha,5 alpha-THP. We propose that progesterone may increase the release of GnRH by a membrane mechanism, via its reduced metabolite 3 alpha,5 alpha-THP acting at the GABAA receptor.
Resumo:
A competitive RT-PCR assay was used to quantify the expression of the GABA(A) receptor beta(1), beta(2) and beta(3) isoform mRNA transcripts in the superior frontal cortex and motor cortex of 21 control and 22 alcoholic cases. A single set of primers was designed that permitted amplification of all three transcripts and the internal standard simultaneously; differentiation of the individual transcripts was achieved by restriction enzyme digestion. Construction of a standard curve, using the internal standard and a concentration range of beta(2) cRNA-enabled quantitation of mRNA expression levels. No significant difference in mRNA expression was found between the control and alcoholic case groups in either the superior frontal or motor cortex for the beta(2) or beta(3) isoforms. A significant interaction was found between isoform and area, although, the two case groups did not partition on this measure. The interaction was due to a significant difference between superior frontal and motor cortex for the beta(3) isoform; this regional comparison was not significant for beta(2) mRNA. Age at death and post-mortem delay (PMD) had no significant effect on beta mRNA expression in either case group in either region. A beta(1) signal could not be detected in the RT-PCR assay. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In the ionotropic glutamate receptor, the global conformational changes induced by partial agonists are smaller than those induced by full agonists. However, in the pentameric ligand-gated ion channel receptor family, the structural basis of partial agonism is not understood. This study investigated whether full and partial agonists induce different conformation changes in the glycine receptor chloride channel ( GlyR). A substituted cysteine accessibility analysis demonstrated previously that glycine binding induced an increase in surface accessibility of all residues from Arg(271) to Lys(276) in the M2-M3 domain of the homomeric alpha1 GlyR. Here we compare the surface accessibility changes induced by the full agonist, glycine, and the partial agonist, taurine. In GlyRs incorporating the A272C, S273C, L274C, or P275C mutation, the reaction rate of the cysteine-specific compound, methanethiosulfonate ethyltrimethylammonium, depended on how strongly the receptors were activated but was agonist-independent. Reaction rates could not be compared in the R271C and K276C mutant GlyRs because methanethiosulfonate ethyltrimethylammonium did not modify the extremely small currents induced by saturating taurine or equivalent low glycine concentrations. The results indicate that bound taurine and glycine molecules impose identical conformational changes to the M2-M3 domain. We therefore conclude that the higher efficacy of glycine is due to an increased ability to stabilize a common activated configuration.
Resumo:
The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg(271) Lys(276)) toward the N-terminal end of the homomeric alpha 1 GlyR M2 - M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound ( MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr(6') residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2 - M3 loop are mediated allosterically. This suggests that the M2 - M3 loop responds differently to the occupation of different binding sites.
Resumo:
Ginkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha 1, alpha 2, alpha 1 beta and alpha 2 beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit. In contrast, the sensitivities to ginkgolides B and C were enhanced by beta subunit expression. However, ginkgolide A sensitivity was increased in the alpha 2 beta GlyR relative to the alpha 2 GlyR but not in the alpha 1 beta GlyR relative to the alpha 1 GlyR. We hypothesised that the subunit-specific differences were mediated by residue differences at the second transmembrane domain 2' and 6' pore-lining positions. The increased ginkgolide A sensitivity of the alpha 2 beta GlyR was transferred to the alpha 1 beta GlyR by the G2'A (alpha 1 to alpha 2 subunit) substitution. In addition, the alpha 1 subunit T6'F mutation abolished inhibition by all ginkgolides. As the ginkgolides share closely related structures, their molecular interactions with pore-lining residues were amenable to mutant cycle analysis. This identified an interaction between the variable R2 position of the ginkgolides and the 2' residues of both alpha 1 and beta subunits. These findings provide strong evidence for ginkgolides binding at the 2' pore-lining position.
Resumo:
Serotonin can modulate the activity of neural reward pathways that are strongly implicated in mediating the effects of chronic alcohol misuse, and its treatment, in human subjects. In previous work and as discussed elsewhere at this meeting, we and others have found consistent differences in the parameters of GABA and glutamate receptors, and the expression of their component subunit transcripts and proteins, in areas of the alcoholic brain that are altered by alcoholism. We did not fi nd clear changes in GABA and glutamate transport function in such samples, but a series of microarray analyses showed consistent upregulation of the presynaptic GABA/betaine transporter SLC6A12. Microarray studies showed no signifi cant differences in the expression of transcripts associated with 5HT transmission; however, only a small number of such elements were present on the arrays. Here we partitioned GABAA and NMDA pharmacology, and subunit mRNA and protein expression, measured in samples of frontal and motor cortex obtained at autopsy from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and controls, according to 5HTTLPR (SLC6A4) and 5HT1B (HTR1B) polymorphisms. We found no effect of these genotypes on the expression of GABAA receptor gene products, but there was a signifi cant mRNA Transcript X Area X Group X 5HTTLPR Interaction with NMDA subunit isoform expression measured by Real Time PCR with GAPDH normalization. Further analysis showed the effect to be selective for alcoholics with cirrhosis, to be most marked in the pathologically vulnerable frontal cortex, and to vary with subunit transcript (F2,76 = 6.545, P = 0.002). NR1 expression was most affected, followed by NR2A, with NR2B expression least altered. Pilot data suggest 5HT1B genotype may also modulate NMDA subunit expression. Interactions between amino acid and serotonin transmission may infl uence susceptibility to alcohol dependence or pathogenesis
Resumo:
As a central integrator of basal ganglia function, the external segment of the globus pallidus (GP) plays a critical role in the control of voluntary movement. The GP is composed of a network of inhibitory GABA-containing projection neurons which receive GABAergic input from axons of the striatum (Str) and local collaterals of GP neurons. Here, using electrophysiological techniques and immunofluorescent labeling we have investigated the differential cellular distribution of a1, a2 and a3 GABAA receptor subunits in relation to striatopallidal (Str-GP) and pallidopallidal (GP-GP) synapses. Electrophysiological investigations showed that zolpidem (100 nm; selective for the a1 subunit) increased the amplitude and the decay time of both Str-GP and GP-GP IPSCs, indicating the presence of the a1 subunits at both synapses. However, the application of drugs selective for the a2, a3 and a5 subunits (zolpidem at 400 nm, L-838,417 and TP003) revealed differential effects on amplitude and decay time of IPSCs, suggesting the nonuniform distribution of non-a1 subunits. Immunofluorescence revealed widespread distribution of the a1 subunit at both soma and dendrites, while double- and triple-immunofluorescent labeling for parvalbumin, enkephalin, gephyrin and the ?2 subunit indicated strong immunoreactivity for GABAAa3 subunits in perisomatic synapses, a region mainly targeted by local axon collaterals. In contrast, immunoreactivity for synaptic GABAAa2 subunits was observed in dendritic compartments where striatal synapses are preferentially located. Due to the kinetic properties which each GABAAa subunit confers, this distribution is likely to contribute differentially to both physiological and pathological patterns of activity.
Resumo:
The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe ?-aminobutyric acid (GABA)(A) receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca(2+) or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at d-subunit-containing GABA(A) receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist ß-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the d-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by d-subunit-containing GABA(A) receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte-neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology.
Resumo:
The gamma-aminobutyric acid (GABA) metabolite gamma-hydroxybutyric acid (GHB) shows a variety of behavioural effects when administered to animals and humans, including reward/addiction properties and absence seizures. At the cellular level, these actions of GHB are mediated by activation of neuronal GABAB receptors (GABABRs) where it acts as a weak agonist. Because astrocytes respond to endogenous and exogenously applied GABA by activation of both GABAA and GABABRs, here we investigated the action of GHB on astrocytes on the ventral tegmental area (VTA) and the ventrobasal (VB) thalamic nucleus, two brain areas involved in the reward and proepileptic action of GHB, respectively, and compared it with that of the potent GABABR agonist baclofen. We found that GHB and baclofen elicited dose-dependent (ED50: 1.6 mM and 1.3 µM, respectively) transient increases in intracellular Ca2+ in VTA and VB astrocytes of young mice and rats, which were accounted for by activation of their GABABRs and mediated by Ca2+ release from intracellular store release. In contrast, prolonged GHB and baclofen exposure caused a reduction in spontaneous astrocyte activity and glutamate release from VTA astrocytes. These findings have key (patho)physiological implications for our understanding of the addictive and proepileptic actions of GHB.
Resumo:
In Parkinson's disease (PD), elevated beta (15-35Hz) power in subcortical motor networks is widely believed to promote aspects of PD symptomatology, moreover, a reduction in beta power and coherence accompanies symptomatic improvement following effective treatment with l-DOPA. Previous studies have reported symptomatic improvements that correlate with changes in cortical network activity following GABAA receptor modulation. In this study we have used whole-head magnetoencephalography to characterize neuronal network activity, at rest and during visually cued finger abductions, in unilaterally symptomatic PD and age-matched control participants. Recordings were then repeated following administration of sub-sedative doses of the hypnotic drug zolpidem (0.05mg/kg), which binds to the benzodiazepine site of the GABAA receptor. A beamforming based 'virtual electrode' approach was used to reconstruct oscillatory power in the primary motor cortex (M1), contralateral and ipsilateral to symptom presentation in PD patients or dominant hand in control participants. In PD patients, contralateral M1 showed significantly greater beta power than ipsilateral M1. Following zolpidem administration contralateral beta power was significantly reduced while ipsilateral beta power was significantly increased resulting in a hemispheric power ratio that approached parity. Furthermore, there was highly significant correlation between hemispheric beta power ratio and Unified Parkinson's Disease Rating Scale (UPDRS). The changes in contralateral and ipsilateral beta power were reflected in pre-movement beta desynchronization and the late post-movement beta rebound. However, the absolute level of movement-related beta desynchronization was not altered. These results show that low-dose zolpidem not only reduces contralateral beta but also increases ipsilateral beta, while rebalancing the dynamic range of M1 network oscillations between the two hemispheres. These changes appear to underlie the symptomatic improvements afforded by low-dose zolpidem.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014