968 resultados para Radiation dose levels


Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUMO - Na radiologia de intervenção, e concretamente em ortopedia, os raios X são intensamente utilizados permitindo a visualização de diversas técnicas de intervenção cirúrgica. Do ponto de vista médico as vantagens dessa prática são enormes, contudo, os profissionais de saúde envolvidos são susceptíveis de estarem expostos a valores de dose de radiação que significam a sua classificação como trabalhadores expostos. O presente estudo realizou-se num hospital e teve como objectivo obter uma estimativa das doses envolvidas em ortopedia de intervenção, utilizando várias metodologias experimentais para caracterização do campo de radiação primário e secundário. Observaram-se distintos níveis de dose de acordo com a zona anatómica exposta à radiação X: (i) gónadas — 0,02 a 3 mGy/h; (ii) cristalino — 0,06 a 1 mGy/h e (iii) mãos — 0,6 mGy/h. Tais resultados evidenciam uma clara necessidade de utilização de equipamentos de protecção e de vigilância dosimétrica pelos profissionais de saúde envolvidos no acto cirúrgico.--------------------------ABSTRACT - In intervention radiology, and more specifically in orthopaedics, X-rays are intensely used allowing the visualization of many acts of clinical intervention. From a clinical perspective, the advantages of that practice are significant; however, involved health care professionals are susceptible of being exposed to radiation dose values that mean their classification as exposed workers. The present study, performed in a hospital, aimed to obtain an estimation of the doses involved in intervention orthopaedics through several experimental methodologies in order to characterise the primary and the secondary radiation fields. Different levels of dose were observed according to the anatomic area exposed to X radiation: (i) gonads — 0.02 a 3 mGy/h; (ii) crystalline lens — 0.06 a 1 mGy/h e (iii) hands – 0.6 mGy/h. Such results denote a clear need of protection equipment use and of dosimetric surveillance by the health

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUMO - A monitorização individual dos trabalhadores (dosimetria individual) é obrigatória (Decreto Regulamentar n.o 9/90, de 19 de Abril) para os profissionais de saúde que desempenham funções com risco de exposição à radiação X, quando classificados como categoria A. Apesar disso, a exposição a radiações ionizantes é frequentemente pouco, ou mesmo nada, valorizada pelos profissionais de saúde. O presente estudo, realizado no contexto de intervenções cirúrgicas de ortopedia, teve por objectivos: • avaliar a dose de radiação em diferentes zonas durante as cirurgias ortopédicas; • estimar a dose de exposição a radiações ionizantes dos profissionais de saúde, em função das suas posições, predominantemente adoptadas durante o acto cirúrgico; • sensibilizar os profissionais de saúde para a utilização correcta da dosimetria individual e para a adopção das medidas de protecção radiológica. A avaliação do risco foi efectuada através de: 1) medições preliminares com recurso a um fantoma colocado a 50 cm e a 100 cm do eixo central do feixe de radiação e em direcções de 45°, 90° e 135°; 2) medições durante uma cirurgia ortopédica em «localizações » correspondentes às gónadas, ao cristalino e às mãos dos profissionais de saúde intervenientes na cirurgia (ortopedistas, enfermeiros instrumentistas); 3) medições ao nível do topo da mesa (posição do anestesista) e ao nível do comando do equipamento emissor de raios X (técnico de radiologia); 4) determinação do tempo de utilização dos raios X durante as cirurgias ortopédicas; 5) cálculo da estimativa do número anual de cirurgias ortopédicas realizadas, com base nos registos existentes. Assumindo a não utilização de aventais plúmbeos os valores máximos medidos foram de 2,5 mSv/h (ao nível das gónadas), de 0,6 mSv/h ao nível do cristalino e de 1 mSv/ h ao nível das mãos dos ortopedistas e dos enfermeiros instrumentistas (que se situavam próximo do feixe de raios X, a 50 cm do feixe de radiação). A estimativa de exposição anual (dose equivalente) para os profissionais que operam junto ao feixe de radiação X foi de: • Ortopedistas — 20,63 a 68,75 mSv (gónadas), 4,95 a 16,50 mSv (cristalino) e 8,25 a 27,50 mSv (mãos); • Enfermeiros instrumentistas — 130,63 a 151,25 mSv (gónadas), 31,35 a 36,30 mSv (cristalino) e 52,25 a Os profissionais que ocupam posições mais afastadas do feixe (por exemplo: anestesistas) terão doses de radiação mais reduzidas, embora estas possam ainda ser importantes ao nível das gónadas na zona do topo da mesa (anestesista). Conclui-se que a exposição profissional em blocos operatórios pode implicar, em cirurgia ortopédica, a sujeição a níveis de exposição consideráveis, o que permite classificar estes profissionais de categoria A, justificando a utilização obrigatória (e correcta de acordo com as recomendações) da dosimetria individual e a adopção de medidas de protecção radiológica, tantas vezes negligenciadas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background:Advantages and disadvantages of ad hoc percutaneous coronary intervention have been described. However little is known about the radiation exposure of that procedure as compared with the staged intervention.Objective:To compare the radiation dose of the ad hoc percutaneous coronary intervention with that of the staged procedureMethods:The dose-area product and total Kerma were measured, and the doses of the diagnostic and therapeutic procedures were added. In addition, total fluoroscopic time and number of acquisitions were evaluated.Results:A total of 568 consecutive patients were treated with ad hoc percutaneous coronary intervention (n = 320) or staged percutaneous coronary intervention (n = 248). On admission, the ad hoc group had less hypertension (74.1% vs 81.9%; p = 0.035), dyslipidemia (57.8% vs. 67.7%; p = 0.02) and three-vessel disease (38.8% vs. 50.4%; p = 0.015). The ad hoc group was exposed to significantly lower radiation doses, even after baseline characteristic adjustment between both groups. The ad hoc group was exposed to a total dose-area product of 119.7 ± 70.7 Gycm2, while the staged group, to 139.2 ± 75.3 Gycm2 (p < 0.001).Conclusion:Ad hoc percutaneous coronary intervention reduced radiation exposure as compared with diagnostic and therapeutic procedures performed at two separate times.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: EMD 521873 (Selectikine), an immunocytokine comprising a DNA-targeting antibody, aimed at tumour necrosis, fused with a genetically modified interleukin-2 (IL-2) moiety, was investigated in this first-in-human phase I study. METHODS: Patients had metastatic or locally advanced solid tumours failing previous standard therapy. Selectikine was administered as a 1-hour intravenous infusion on 3 consecutive days, every 3weeks. A subgroup of patients also received 300mg/m(2) cyclophosphamide on day 1 of each cycle. Escalating doses of Selectikine were investigated with the primary objective of determining the maximum tolerated dose (MTD). RESULTS: Thirty-nine patients were treated with Selectikine alone at dose levels from 0.075 to 0.9mg/kg, and nine were treated at doses of 0.45 and 0.6mg/kg in combination with cyclophosphamide. A dose-dependent linear increase of peak serum concentrations and area under curve was found. The dose-limiting toxicity was grade 3 skin rash at the 0.9mg/kg dose-level; the MTD was 0.6mg/kg. Rash and flu-like symptoms were the most frequent side-effects. No severe cardiovascular side-effects (hypotension or vascular leak) were observed. At all dose-levels, transient increases in total lymphocyte, eosinophil and monocyte counts were recorded. No objective tumour responses, but long periods of disease stabilisation were observed. Transient and non-neutralising Selectikine antibodies were detected in 69% of patients. CONCLUSIONS: The MTD of Selectikine with or without cyclophosphamide administered under this schedule was 0.6mg/kg. The recommended phase II dose was 0.45-0.6mg/kg. Selectikine had a favourable safety profile and induced biological effects typical for IL-2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: Dose reduction may compromise patients because of a decrease of image quality. Therefore, the amount of dose savings in new dose-reduction techniques needs to be thoroughly assessed. To avoid repeated studies in one patient, chest computed tomography (CT) scans with different dose levels were performed in corpses comparing model-based iterative reconstruction (MBIR) as a tool to enhance image quality with current standard full-dose imaging. MATERIALS AND METHODS: Twenty-five human cadavers were scanned (CT HD750) after contrast medium injection at different, decreasing dose levels D0-D5 and respectively reconstructed with MBIR. The data at full-dose level, D0, have been additionally reconstructed with standard adaptive statistical iterative reconstruction (ASIR), which represented the full-dose baseline reference (FDBR). Two radiologists independently compared image quality (IQ) in 3-mm multiplanar reformations for soft-tissue evaluation of D0-D5 to FDBR (-2, diagnostically inferior; -1, inferior; 0, equal; +1, superior; and +2, diagnostically superior). For statistical analysis, the intraclass correlation coefficient (ICC) and the Wilcoxon test were used. RESULTS: Mean CT dose index values (mGy) were as follows: D0/FDBR = 10.1 ± 1.7, D1 = 6.2 ± 2.8, D2 = 5.7 ± 2.7, D3 = 3.5 ± 1.9, D4 = 1.8 ± 1.0, and D5 = 0.9 ± 0.5. Mean IQ ratings were as follows: D0 = +1.8 ± 0.2, D1 = +1.5 ± 0.3, D2 = +1.1 ± 0.3, D3 = +0.7 ± 0.5, D4 = +0.1 ± 0.5, and D5 = -1.2 ± 0.5. All values demonstrated a significant difference to baseline (P < .05), except mean IQ for D4 (P = .61). ICC was 0.91. CONCLUSIONS: Compared to ASIR, MBIR allowed for a significant dose reduction of 82% without impairment of IQ. This resulted in a calculated mean effective dose below 1 mSv.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background. DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

20 patients with liver metastases from colorectal carcinoma undergoing laparotomy received 15-60 mg intravenously, either intact or fragments of, anti-carcinoembryonic antigen (anti-CEA) monoclonal antibodies labelled with 0.55-1.48 GBq (15-40 mCi) of 131I, 3-8 days prior to operation. The uptake measured per gram of metastases ranged from 0.33 to 6.6 x 10(-3%) of injected dose. Tumour to liver uptake ratios ranged from 2 to 33. The radiation dose, estimated in 6 patients (3 of each group), for an extrapolated dose of 3.7 GBq (100 mCi) of 131I ranged from 0.3 to 0.8 Gy in normal liver or spleen (an acceptable estimate for bone marrow radiation dose) and from 3.4 to 8.2 Gy to the hepatic metastases, indicating that probably other therapeutic modalities should be associated with radioimmunotherapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND In cervical postoperative radiotherapy, the target volume is usually the same as the extension of the previous dissection. We evaluated a protocol of selective irradiation according to the risk estimated for each dissected lymph node level. METHODS Eighty patients with oral/oropharyngeal cancer were included in this prospective clinical study between 2005 and 2008. Patients underwent surgery of the primary tumor and cervical dissection, with identification of positive nodal levels, followed by selective postoperative radiotherapy. Three types of selective nodal clinical target volume (CTV) were defined: CTV0, CTV1, and CTV2, with a subclinical disease risk of <10%, 10-25%, and 25% and a prescribed radiation dose of <35 Gy, 50 Gy, and 66-70 Gy, respectively. The localization of node failure was categorized as field, marginal, or outside the irradiated field. RESULTS A consistent pattern of cervical infiltration was observed in 97% of positive dissections. Lymph node failure occurred within a high-risk irradiated area (CTV1-CTV2) in 12 patients, marginal area (CTV1/CTVO) in 1 patient, and non-irradiated low-risk area (CTV0) in 2 patients. The volume of selective lymph node irradiation was below the standard radiation volume in 33 patients (mean of 118.6 cc per patient). This decrease in irradiated volume was associated with greater treatment compliance and reduced secondary toxicity. The three-year actuarial nodal control rate was 80%. CONCLUSION This selective postoperative neck irradiation protocol was associated with a similar failure pattern to that observed after standard neck irradiation and achieved a significant reduction in target volume and secondary toxicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In vivo dosimetry is a way to verify the radiation dose delivered to the patient in measuring the dose generally during the first fraction of the treatment. It is the only dose delivery control based on a measurement performed during the treatment. In today's radiotherapy practice, the dose delivered to the patient is planned using 3D dose calculation algorithms and volumetric images representing the patient. Due to the high accuracy and precision necessary in radiation treatments, national and international organisations like ICRU and AAPM recommend the use of in vivo dosimetry. It is also mandatory in some countries like France. Various in vivo dosimetry methods have been developed during the past years. These methods are point-, line-, plane- or 3D dose controls. A 3D in vivo dosimetry provides the most information about the dose delivered to the patient, with respect to ID and 2D methods. However, to our knowledge, it is generally not routinely applied to patient treatments yet. The aim of this PhD thesis was to determine whether it is possible to reconstruct the 3D delivered dose using transmitted beam measurements in the context of narrow beams. An iterative dose reconstruction method has been described and implemented. The iterative algorithm includes a simple 3D dose calculation algorithm based on the convolution/superposition principle. The methodology was applied to narrow beams produced by a conventional 6 MV linac. The transmitted dose was measured using an array of ion chambers, as to simulate the linear nature of a tomotherapy detector. We showed that the iterative algorithm converges quickly and reconstructs the dose within a good agreement (at least 3% / 3 mm locally), which is inside the 5% recommended by the ICRU. Moreover it was demonstrated on phantom measurements that the proposed method allows us detecting some set-up errors and interfraction geometry modifications. We also have discussed the limitations of the 3D dose reconstruction for dose delivery error detection. Afterwards, stability tests of the tomotherapy MVCT built-in onboard detector was performed in order to evaluate if such a detector is suitable for 3D in-vivo dosimetry. The detector showed stability on short and long terms comparable to other imaging devices as the EPIDs, also used for in vivo dosimetry. Subsequently, a methodology for the dose reconstruction using the tomotherapy MVCT detector is proposed in the context of static irradiations. This manuscript is composed of two articles and a script providing further information related to this work. In the latter, the first chapter introduces the state-of-the-art of in vivo dosimetry and adaptive radiotherapy, and explains why we are interested in performing 3D dose reconstructions. In chapter 2 a dose calculation algorithm implemented for this work is reviewed with a detailed description of the physical parameters needed for calculating 3D absorbed dose distributions. The tomotherapy MVCT detector used for transit measurements and its characteristics are described in chapter 3. Chapter 4 contains a first article entitled '3D dose reconstruction for narrow beams using ion chamber array measurements', which describes the dose reconstruction method and presents tests of the methodology on phantoms irradiated with 6 MV narrow photon beams. Chapter 5 contains a second article 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations. A dose reconstruction process specific to the use of the tomotherapy MVCT detector is presented in chapter 6. A discussion and perspectives of the PhD thesis are presented in chapter 7, followed by a conclusion in chapter 8. The tomotherapy treatment device is described in appendix 1 and an overview of 3D conformai- and intensity modulated radiotherapy is presented in appendix 2. - La dosimétrie in vivo est une technique utilisée pour vérifier la dose délivrée au patient en faisant une mesure, généralement pendant la première séance du traitement. Il s'agit de la seule technique de contrôle de la dose délivrée basée sur une mesure réalisée durant l'irradiation du patient. La dose au patient est calculée au moyen d'algorithmes 3D utilisant des images volumétriques du patient. En raison de la haute précision nécessaire lors des traitements de radiothérapie, des organismes nationaux et internationaux tels que l'ICRU et l'AAPM recommandent l'utilisation de la dosimétrie in vivo, qui est devenue obligatoire dans certains pays dont la France. Diverses méthodes de dosimétrie in vivo existent. Elles peuvent être classées en dosimétrie ponctuelle, planaire ou tridimensionnelle. La dosimétrie 3D est celle qui fournit le plus d'information sur la dose délivrée. Cependant, à notre connaissance, elle n'est généralement pas appliquée dans la routine clinique. Le but de cette recherche était de déterminer s'il est possible de reconstruire la dose 3D délivrée en se basant sur des mesures de la dose transmise, dans le contexte des faisceaux étroits. Une méthode itérative de reconstruction de la dose a été décrite et implémentée. L'algorithme itératif contient un algorithme simple basé sur le principe de convolution/superposition pour le calcul de la dose. La dose transmise a été mesurée à l'aide d'une série de chambres à ionisations alignées afin de simuler la nature linéaire du détecteur de la tomothérapie. Nous avons montré que l'algorithme itératif converge rapidement et qu'il permet de reconstruire la dose délivrée avec une bonne précision (au moins 3 % localement / 3 mm). De plus, nous avons démontré que cette méthode permet de détecter certaines erreurs de positionnement du patient, ainsi que des modifications géométriques qui peuvent subvenir entre les séances de traitement. Nous avons discuté les limites de cette méthode pour la détection de certaines erreurs d'irradiation. Par la suite, des tests de stabilité du détecteur MVCT intégré à la tomothérapie ont été effectués, dans le but de déterminer si ce dernier peut être utilisé pour la dosimétrie in vivo. Ce détecteur a démontré une stabilité à court et à long terme comparable à d'autres détecteurs tels que les EPIDs également utilisés pour l'imagerie et la dosimétrie in vivo. Pour finir, une adaptation de la méthode de reconstruction de la dose a été proposée afin de pouvoir l'implémenter sur une installation de tomothérapie. Ce manuscrit est composé de deux articles et d'un script contenant des informations supplémentaires sur ce travail. Dans ce dernier, le premier chapitre introduit l'état de l'art de la dosimétrie in vivo et de la radiothérapie adaptative, et explique pourquoi nous nous intéressons à la reconstruction 3D de la dose délivrée. Dans le chapitre 2, l'algorithme 3D de calcul de dose implémenté pour ce travail est décrit, ainsi que les paramètres physiques principaux nécessaires pour le calcul de dose. Les caractéristiques du détecteur MVCT de la tomothérapie utilisé pour les mesures de transit sont décrites dans le chapitre 3. Le chapitre 4 contient un premier article intitulé '3D dose reconstruction for narrow beams using ion chamber array measurements', qui décrit la méthode de reconstruction et présente des tests de la méthodologie sur des fantômes irradiés avec des faisceaux étroits. Le chapitre 5 contient un second article intitulé 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations'. Un procédé de reconstruction de la dose spécifique pour l'utilisation du détecteur MVCT de la tomothérapie est présenté au chapitre 6. Une discussion et les perspectives de la thèse de doctorat sont présentées au chapitre 7, suivies par une conclusion au chapitre 8. Le concept de la tomothérapie est exposé dans l'annexe 1. Pour finir, la radiothérapie «informationnelle 3D et la radiothérapie par modulation d'intensité sont présentées dans l'annexe 2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A basic prerequisite for in vivo X-ray imaging of the lung is the exact determination of radiation dose. Achieving resolutions of the order of micrometres may become particularly challenging owing to increased dose, which in the worst case can be lethal for the imaged animal model. A framework for linking image quality to radiation dose in order to optimize experimental parameters with respect to dose reduction is presented. The approach may find application for current and future in vivo studies to facilitate proper experiment planning and radiation risk assessment on the one hand and exploit imaging capabilities on the other.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This phase I trial was designed to develop a new effective and well-tolerated regimen for patients with aggressive B cell lymphoma not eligible for front-line anthracycline-based chemotherapy or aggressive second-line treatment strategies. The combination of rituximab (375 mg/m(2) on day 1), bendamustine (70 mg/m(2) on days 1 and 2), and lenalidomide was tested with a dose escalation of lenalidomide at three dose levels (10, 15, or 20 mg/day) using a 3 + 3 design. Courses were repeated every 4 weeks. The recommended dose was defined as one level below the dose level identifying ≥2/6 patients with a dose-limiting toxicity (DLT) during the first cycle. Thirteen patients were eligible for analysis. Median age was 77 years. WHO performance status was 0 or 1 in 12 patients. The Charlson Comorbidity Index showed relevant comorbidities in all patients. Two DLTs occurred at the second dose level (15 mg/day) within the first cycle: one patient had prolonged grade 3 neutropenia, and one patient experienced grade 4 cardiac adverse event (myocardial infarction). Additional grade 3 and 4 toxicities were as follows: neutropenia (31 %), thrombocytopenia (23 %), cardiac toxicity (31 %), fatigue (15 %), and rash (15 %). The dose of lenalidomide of 10 mg/day was recommended for a subsequent phase II in combination with rituximab 375 mg/m(2) on day 1 and bendamustine 70 mg/m(2) on days 1 and 2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Although several approaches have been already used to reduce radiation dose, CT doses are still among the high doses in radio-diagnostic. Recently, General Electric introduced a new imaging reconstruction technique, adaptive statistical iterative reconstruction (ASIR), allows to taking into account the statistical fluctuation of noise. The benefits of ASIR method were assessed through classic metrics and the evaluations of cardiac structures by radiologists. Methods and materials: A 64-row CT (MDCT) was employed. Catphan600 phantom acquisitions and 10 routine-dose CT examinations performed at 80 kVp were reconstructed with FBP and with 50% of ASIR. Six radiologists then assessed the visibility of main cardiac structures using the visual grading analysis (VGA) method. Results: On phantoms, for a constant value of SD (25 HU), CTDIvol is divided by 2 (8 mGy to 4 mGy) when 50% of ASIR is used. At constant CTDIvol, MTF medium frequencies were also significantly improved. First results indicated that clinical images reconstructed with ASIR had a better overall image quality compared with conventional reconstruction. This means that at constant image quality the radiation dose can be strongly reduced. Conclusion: The first results of this study shown that the ASIR method improves the image quality on phantoms by decreasing noise and improving resolution with respect to the classical one. Moreover, the benefit obtained is higher at lower doses. In clinical environment, a dose reduction can still be expected on 80 kVp low dose pediatric protocols using 50% of iterative reconstruction. Best ASIR percentage as a function of cardiac structures and detailed protocols will be presented for cardiac examinations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the present study was to establish the extent of in vitro radioresponse of lymphocytes among 62 healthy adults of both genders and to estimate the distribution of baseline micronuclei and radiosensitivity among individuals of the study population using the cytochalasin block micronucleus test. A younger study group consisted of 10 males (mean age, 22.4 years; range, 21-27) and 12 females (mean age, 24.8 years; range, 20-29), whereas an older study group consisted of 18 males (mean age, 35.1 years; range, 30-44) and 22 females (mean age, 38.5 years; range, 30-48). For evaluation of radiosensitivity blood samples were irradiated in vitro using 60Co g-ray source. The radiation dose employed was 2 Gy, the dose rate 0.45 Gy/min. The study revealed a significant gender effect on baseline micronuclei favoring females (Z = 3.25, P < 0.001), while yields of radiation-induced micronuclei did not differ significantly (Z = 0.56, P < 0.56) between genders. The distribution of baseline micronuclei among the individuals tested followed Poisson distribution in both study groups and in both genders, whereas the distribution of radiosensitivity among individuals of the older study group did not fulfill Poisson expectations (Kolmogorov-Smirnof test, P < 0.01). In contrast to a nonsignificant difference in radiosensitivity between males and females of the same age group (Z = 1.97, P < 0.56), a statistically significant difference in radiosensitivity between younger and older group for both genders was found (Z = 3.03, P < 0.03). Since the individuals tested were healthy, the observed variability in radiation response is considered to be an early effect of ageing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry.