868 resultados para Radial Focus visualization
Resumo:
This thesis addresses the process simulation and validation in Business Process Management. It proposes that the hybrid Multi Agent System (MAS) / 3D Virtual World approach is a valid method for better simulating the behaviour of human resources in business processes, supporting a wide range of rich visualization applications that can facilitate communication between business analysts and stakeholders. It is expected that the findings of this thesis may be fruitfully extended from BPM to other application domains, such as social simulation in video games and computer-based training animations.
Resumo:
BACKGROUND Research on engineering design is a core area of concern within engineering education and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. Understanding the factors related to design experiences in education and how they affect student practice can help educators as well as designers to leverage these factors as part of the design process. PURPOSE This study investigated the design practices of first-year engineering students’ and their experiences with a first-year engineering course design project. The research questions that guided the investigation were: 1. From a student perspective, what design parameters or criteria are most important? 2. How does this perspective impact subsequent student design practice throughout the design process? DESIGN/METHOD The authors employed qualitative multi-case study methods (Miles & Huberman, 1994) in order to the answer the research questions. Participant teams were observed and video recorded during team design meetings in which they researched the background for the design problem, brainstormed and sketched possible solutions, as well as built prototypes and final models of their design solutions as part of a course design project. Analysis focused on explanation building (Yin, 2009) and utilized within-case and cross-case analysis (Miles & Huberman, 1994). RESULTS We found that students focused disproportionally on the functional parameter, i.e. the physical implementation of their solution, and the possible/applicable parameter, i.e. a possible and applicable solution that benefited the user, in comparison to other given parameters such as safety and innovativeness. In addition, we found that individual teams focused on the functional and possible/ applicable parameters in early design phases such as brainstorming/ ideation and sketching. When prompted to discuss these non-salient parameters (from the student perspective) in the final design report, student design teams often used a post-hoc justification to support how the final designs fit the parameters that they did not initially consider. CONCLUSIONS This study suggests is that student design teams become fixated on (and consequently prioritize) certain parameters they interpret as important because they feel these parameters were described more explicitly in terms how they were met and assessed. Students fail to consider other parameters, perceived to be less directly assessable, unless prompted to do so. Failure to consider other parameters in the early design phases subsequently affects their approach in design phases as well. Case studies examining students’ study strategies within three Australian Universities illustrate similarities with some student approaches to design.
Resumo:
This introduction to the special issue outlines the case for an increased focus on studying lifestyle journalism, an area of journalism which, despite its rapid rise over recent decades, has not received much attention from scholars in journalism studies. Criticised for being antithetical to public interest and watchdog notions of journalism, lifestyle journalism is still ridiculed by some as being unworthy of being associated with the term journalism. However, in outlining the field's development and a critique of definitions of journalism, this paper argues that there are a number of good reasons for broadening the focus. In fact, lifestyle journalism?here defined as a distinct journalistic field that primarily addresses its audiences as consumers, providing them with factual information and advice, often in entertaining ways, about goods and services they can use in their daily lives?has much to offer for scholarly inquiry and is of increasing relevance for society.
Resumo:
An important aspect of decision support systems involves applying sophisticated and flexible statistical models to real datasets and communicating these results to decision makers in interpretable ways. An important class of problem is the modelling of incidence such as fire, disease etc. Models of incidence known as point processes or Cox processes are particularly challenging as they are ‘doubly stochastic’ i.e. obtaining the probability mass function of incidents requires two integrals to be evaluated. Existing approaches to the problem either use simple models that obtain predictions using plug-in point estimates and do not distinguish between Cox processes and density estimation but do use sophisticated 3D visualization for interpretation. Alternatively other work employs sophisticated non-parametric Bayesian Cox process models, but do not use visualization to render interpretable complex spatial temporal forecasts. The contribution here is to fill this gap by inferring predictive distributions of Gaussian-log Cox processes and rendering them using state of the art 3D visualization techniques. This requires performing inference on an approximation of the model on a discretized grid of large scale and adapting an existing spatial-diurnal kernel to the log Gaussian Cox process context.
Resumo:
Distributed generation (DG) resources are commonly used in the electric systems to obtain minimum line losses, as one of the benefits of DG, in radial distribution systems. Studies have shown the importance of appropriate selection of location and size of DGs. This paper proposes an analytical method for solving optimal distributed generation placement (ODGP) problem to minimize line losses in radial distribution systems using loss sensitivity factor (LSF) based on bus-injection to branch-current (BIBC) matrix. The proposed method is formulated and tested on 12 and 34 bus radial distribution systems. The classical grid search algorithm based on successive load flows is employed to validate the results. The main advantages of the proposed method as compared with the other conventional methods are the robustness and no need to calculate and invert large admittance or Jacobian matrices. Therefore, the simulation time and the amount of computer memory, required for processing data especially for the large systems, decreases.
Resumo:
Visual information is central to several of the scientific disciplines. This paper studies how scientists working in a multidisciplinary field produce scientific evidence through building and manipulating scientific visualizations. Using ethnographic methods, we studied visualization practices of eight scientists working in the domain of tissue engineering research. Tissue engineering is an upcoming field of research that deals with replacing or regenerating human cells, tissues, or organs to restore or establish normal function. We spent 3 months in the field, where we recorded laboratory sessions of these scientists and used semi-structured interviews to get an insight into their visualization practices. From our results, we elicit two themes characterizing their visualization practices: multiplicity and physicality. In this article, we provide several examples of scientists’ visualization practices to describe these two themes and show that multimodality of such practices plays an important role in scientific visualization.
Resumo:
This project develops and evaluates a model of curriculum design that aims to assist student learning of foundational disciplinary ‘Threshold Concepts’. The project uses phenomenographic action research, cross-institutional peer collaboration and the Variation Theory of Learning to develop and trial the model. Two contrasting disciplines (Physics and Law) and four institutions (two research-intensive and two universities of technology) were involved in the project, to ensure broad applicability of the model across different disciplines and contexts. The Threshold Concepts that were selected for curriculum design attention were measurement uncertainty in Physics and legal reasoning in Law. Threshold Concepts are key disciplinary concepts that are inherently troublesome, transformative and integrative in nature. Once understood, such concepts transform students’ views of the discipline because they enable students to coherently integrate what were previously seen as unrelated aspects of the subject, providing new ways of thinking about it (Meyer & Land 2003, 2005, 2006; Land et al. 2008). However, the integrative and transformative nature of such threshold concepts make them inherently difficult for students to learn, with resulting misunderstandings of concepts being prevalent...
Resumo:
Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of Distributed Generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. This paper addresses the issue of improving the network voltage profile in distribution systems by installing a DG of the most suitable size, at a suitable location. An analytical approach is developed based on algebraic equations for uniformly distributed loads to determine the optimal operation, size and location of the DG in order to achieve required levels of network voltage. The developed method is simple to use for conceptual design and analysis of distribution system expansion with a DG and suitable for a quick estimation of DG parameters (such as optimal operating angle, size and location of a DG system) in a radial network. A practical network is used to verify the proposed technique and test results are presented.
Resumo:
ATTENDANCE IN HIGH -QUALITY early childhood education and care (ECEC) has been shown to have a positive influence on young children’s development and life chances, especially for those children from disadvantaged backgrounds. A number of government policies are in place, both internationally and in Australia, to support these children’s use of ECEC services. But to what extent do Australia’s most vulnerable children use ECEC? Drawing on data from Growing up in Australia: The longitudinal study of Australian children (LSAC) this paper demonstrates that children from a range of disadvantaged groups do use ECEC. However, based on more in-depth analyses using a Disadvantage Index, the paper also shows that children with multiple indicators of disadvantage were more likely to be in exclusive parental care, less likely to be using preschool and using fewer hours of care than their peers. These findings suggest that there may be barriers to ECEC utilisation for children and families for whom ECEC potentially has the most benefit.
Resumo:
In this paper we describe the design of DNA Jewellery, which is a wearable tangible data representation of personal DNA profile data. An iterative design process was followed to develop a 3D form-language that could be mapped to standard DNA profile data, with the aim of retaining readability of data while also producing an aesthetically pleasing and unique result in the area of personalized design. The work explores design issues with the production of data tangibles, contributes to a growing body of research exploring tangible representations of data and highlights the importance of approaches that move between technology, art and design.
Resumo:
Dynamics is an essential core engineering subject and it is considered as one of the hardest subjects in the engineering discipline. Many students acknowledged that Dynamics is very hard to understand and comprehend the abstract concepts through traditional teaching methods with normal tutorials and assignments. In this study, we conducted an investigation on the application of visualization technique to help students learning the unit with the fundamental theory displayed in the physical space. The research was conducted based on the following five basic steps of Action Learning Cycle including: Identifying problem, Planning action, Implementing, Evaluating, and Reporting. Through our studies, we have concluded that visualization technique can definitely help students in learning and comprehending the abstract theories and concepts of Dynamics.
Resumo:
Dynamics is an essential core engineering subject. It includes high level mathematical and theoretical contents, and basic concepts which are abstract in nature. Hence, Dynamics is considered as one of the hardest subjects in the engineering discipline. To assist our students in learning this subject, we have conducted a Teaching & Learning project to study ways and methods to effectively teach Dynamics based on visualization techniques. The research project adopts the five basic steps of Action Learning Cycle. It is found that visualization technique is a powerful tool for students learning Dynamics and helps to break the barrier of students who perceived Dynamics as a hard subject.
Resumo:
Normal asymmetric glow dc discharge in the thermal furnace converted into the efficient PECVD system was imaged to adjust the structure of the plasma column to the two possible localizations of the process zone. The visualization revealed the possibility to use short and long discharge configurations for the plasma-enabled growth and processing of various nanostructures in the modified setup. Images of the discharge in the two localizations are presented.
Resumo:
Using advanced visualization techniques, a comprehensive visualization of all the stages of the self-organized growth of internetworked nanostructures on plasma-exposed surface has been made. Atomistic kinetic Monte Carlo simulation for the initial stage of deposition, with 3-D visualization of the whole system and half-tone visualization of the density field of the adsorbed atoms, makes it possible to implement a multiscale predictive modeling of the development of the nanoscale system.