990 resultados para RESOLVED FLUOROMETRIC APPLICATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis concerns the study of the variable stars and resolved stellar populations in four recently discovered dSphs, namely, Hercules and Ursa Major I (UMa I), which are UFD satellites of the MW; Andromeda XIX (And XIX) and Andromeda XXI (And XXI), which are satellites of M31. The main aim is to obtain detailed informations on the properties (age, metallicity, distance, and Oosterhoff type) of the stellar populations in these galaxies, to compare them with those of other satellites around the MW and M31, both ''classical'' dSphs and UFDs. The observables used to achieve these goals are the pulsating variables, especially the RR Lyrae stars, and the color magnitude diagram (CMD) of the resolved stellar populations. In particular, for UMa I, we combined B, V time-series observations from four different ground-based telescopes (Cassini, TLS, TT1 and Subaru) and for Hercules, we used archival data acquired with the Advanced Camera for Surveys (ACS) on board the HST. We used, instead B and V times-series photometry obtained with the Large Binocular Telescope (LBT) for And XIX and And XXI .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The membrane protein Cytochrome c Oxidase (CcO) is one of the most important functional bio-molecules. It appears in almost every eukaryotic cell and many bacteria. Although the different species differ in the number of subunits, the functional differences are merely marginal. CcO is the terminal link in the electron transfer pathway of the mitochondrial respiratory chain. Electrons transferred to the catalytic center of the enzyme conduce to the reduction of molecular oxygen to water. Oxygen reduction is coupled to the pumping of protons into the inter-membrane space and hence generates a difference in electrochemical potential of protons across the inner mitochondrial membrane. This potential difference drives the synthesis of adenosine triphosphate (ATP), which is the universal energy carrier within all biological cells. rnrnThe goal of the present work is to contribute to a better understanding of the functional mechanism of CcO by using time-resolved surface enhanced resonance Raman spectroscopy (TR-SERRS). Despite intensive research effort within the last decades, the functional mechanism of CcO is still subject to controversial discussions. It was the primary goal of this dissertation to initiate electron transfer to the redox centers CuA, heme a, heme a3 and CuB electrochemically and to observe the corresponding redox transitions in-situ with a focus on the two heme structures by using SERRS. A measuring cell was developed, which allowed combination of electrochemical excitation with Raman spectroscopy for the purpose of performing the accordant measurements. Cytochrome c was used as a benchmark system to test the new measuring cell and to prove the feasibility of appropriate Raman measurements. In contrast to CcO the heme protein cc contains only a single heme structure. Nevertheless, characteristic Raman bands of the hemes can be observed for both proteins.rnrnIn order to investigate CcO it was immobilized on top of a silver substrate and embedded into an artificial membrane. The catalytic activity of CcO and therefore the complete functional capability of the enzyme within the biomimetic membrane architecture was verified using cyclic voltammetry. Raman spectroscopy was performed using a special nano-structured silver surface, which was developed within the scope of the present work. This new substrate combined two fundamental properties. It facilitated the formation of a protein tethered bilayer lipid membrane (ptBLM) and it allowed obtaining Raman spectra with sufficient high signal-to-noise ratios.rnSpectro-electrochemical investigations showed that at open circuit potential the enzyme exists in a mixed-valence state, with heme a and and heme a3 in the reduced and oxidized state, respectively. This was considered as an intermediate state between the non-activated and the fully activated state of CcO. Time-resolved SERRS measurements revealed that a hampered electron transfer to the redox center heme a3 characterizes this intermediate state.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrom c Oxidase (CcO), der Komplex IV der Atmungskette, ist eine der Häm-Kupfer enthaltenden Oxidasen und hat eine wichtige Funktion im Zellmetabolismus. Das Enzym enthält vier prosthetische Gruppen und befindet sich in der inneren Membran von Mitochondrien und in der Zellmembran einiger aerober Bakterien. Die CcO katalysiert den Elektronentransfer (ET) von Cytochrom c zu O2, wobei die eigentliche Reaktion am binuklearen Zentrum (CuB-Häm a3) erfolgt. Bei der Reduktion von O2 zu zwei H2O werden vier Protonen verbraucht. Zudem werden vier Protonen über die Membran transportiert, wodurch eine elektrochemische Potentialdifferenz dieser Ionen zwischen Matrix und Intermembranphase entsteht. Trotz ihrer Wichtigkeit sind Membranproteine wie die CcO noch wenig untersucht, weshalb auch der Mechanismus der Atmungskette noch nicht vollständig aufgeklärt ist. Das Ziel dieser Arbeit ist, einen Beitrag zum Verständnis der Funktion der CcO zu leisten. Hierzu wurde die CcO aus Rhodobacter sphaeroides über einen His-Anker, der am C-Terminus der Untereinheit II angebracht wurde, an eine funktionalisierte Metallelektrode in definierter Orientierung gebunden. Der erste Elektronenakzeptor, das CuA, liegt dabei am nächsten zur Metalloberfläche. Dann wurde eine Doppelschicht aus Lipiden insitu zwischen die gebundenen Proteine eingefügt, was zur sog. proteingebundenen Lipid-Doppelschicht Membran (ptBLM) führt. Dabei musste die optimale Oberflächenkonzentration der gebundenen Proteine herausgefunden werden. Elektrochemische Impedanzspektroskopie(EIS), Oberflächenplasmonenresonanzspektroskopie (SPR) und zyklische Voltammetrie (CV) wurden angewandt um die Aktivität der CcO als Funktion der Packungsdichte zu charakterisieren. Der Hauptteil der Arbeit betrifft die Untersuchung des direkten ET zur CcO unter anaeroben Bedingungen. Die Kombination aus zeitaufgelöster oberflächenverstärkter Infrarot-Absorptionsspektroskopie (tr-SEIRAS) und Elektrochemie hat sich dafür als besonders geeignet erwiesen. In einer ersten Studie wurde der ET mit Hilfe von fast scan CV untersucht, wobei CVs von nicht-aktivierter sowie aktivierter CcO mit verschiedenen Vorschubgeschwindigkeiten gemessen wurden. Die aktivierte Form wurde nach dem katalytischen Umsatz des Proteins in Anwesenheit von O2 erhalten. Ein vier-ET-modell wurde entwickelt um die CVs zu analysieren. Die Methode erlaubt zwischen dem Mechanismus des sequentiellen und des unabhängigen ET zu den vier Zentren CuA, Häm a, Häm a3 und CuB zu unterscheiden. Zudem lassen sich die Standardredoxpotentiale und die kinetischen Koeffizienten des ET bestimmen. In einer zweiten Studie wurde tr-SEIRAS im step scan Modus angewandt. Dafür wurden Rechteckpulse an die CcO angelegt und SEIRAS im ART-Modus verwendet um Spektren bei definierten Zeitscheiben aufzunehmen. Aus diesen Spektren wurden einzelne Banden isoliert, die Veränderungen von Vibrationsmoden der Aminosäuren und Peptidgruppen in Abhängigkeit des Redoxzustands der Zentren zeigen. Aufgrund von Zuordnungen aus der Literatur, die durch potentiometrische Titration der CcO ermittelt wurden, konnten die Banden versuchsweise den Redoxzentren zugeordnet werden. Die Bandenflächen gegen die Zeit aufgetragen geben dann die Redox-Kinetik der Zentren wieder und wurden wiederum mit dem vier-ET-Modell ausgewertet. Die Ergebnisse beider Studien erlauben die Schlussfolgerung, dass der ET zur CcO in einer ptBLM mit größter Wahrscheinlichkeit dem sequentiellen Mechanismus folgt, was dem natürlichen ET von Cytochrom c zur CcO entspricht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I present a new experimental method called Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high NA oil-immersion objective. Due to the fast decay of the evanescent wave, fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in very high normal resolution. The time-resolved fluorescence intensity signals from two laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are independently measured and recorded. The cross-correlation of these signals provides important information for the tracers’ motion and thus their flow velocity. Due to the high sensitivity of the method, fluorescent species with different size, down to single dye molecules can be used as tracers. The aim of my work was to build an experimental setup for TIR-FCCS and use it to experimentally measure the shear rate and slip length of water flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these parameters from the measured correlation curves a quantitative data analysis is needed. This is not straightforward task due to the complexity of the problem, which makes the derivation of analytical expressions for the correlation functions needed to fit the experimental data, impossible. Therefore in order to process and interpret the experimental results I also describe a new numerical method of data analysis of the acquired auto- and cross-correlation curves – Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation functions and to fit the corresponding experimental data. I show how to combine detailed and fairly realistic theoretical modelling of the phenomena with accurate measurements of the correlation functions, in order to establish a fully quantitative method to retrieve the flow properties from the experiments. An importance-sampling Monte Carlo procedure is employed in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for both modern desktop PC machines and massively parallel computers. The latter allows making the data analysis within short computing times. I applied this method to study flow of aqueous electrolyte solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface slip is not expected, while on hydrophobic surface some slippage may exists. Our results show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, indistinguishable from zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins. Conclusions The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of C. inanitus appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The supramolecular assembly of amphiphilic oligopyrenotide building blocks (covalently linked heptapyrene, Py7) is studied by atomic force microscopy (AFM) in combination with optical spectroscopy. The assembly process is triggered in a controlled manner by increasing the ionic strength of the aqueous oligomer solution. Cooperative noncovalent interactions between individual oligomeric units lead to the formation of DNA-like supramolecular polymers. We also show that the terminal attachment of a single cytidine nucleotide to the heptapyrenotide (Py7-C) changes the association process from a cooperative (nucleation−elongation) to a noncooperative (isodesmic) regime, suggesting a structure misfit between the cytidine and the pyrene units. We also demonstrate that AFM enables the identification and characterization of minute concentrations of the supramolecular products, which was not accessible by conventional optical spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very recently, the concept of artificial intracorporeal oxygenation of blood for patients suffering from respiratory failure has been introduced into clinical practice through development of a totally implantable intravascular oxygenator (IVOX). We report on the use of such a device in a patient who developed severe respiratory insufficiency secondary to prolonged hypovolaemic shock and pneumonia following successful repair of a ruptured abdominal aortic aneurysm in September, 1990. Postoperatively, severe hypoxaemia occurred (AaDO2 548-602 torr) despite extensive mechanical ventilatory support. There was no obvious chance to overcome this situation by conventional therapeutic measures and the decision was made to institute IVOX therapy. Hypoxaemia was resolved immediately and both FiO2 and tidal volume could be reduced within hours. The patient's respiratory condition continued to improve over the next days leading to termination of IVOX therapy after 71 hours. However, the necessity of long-term ventilatory support secondary to recurrent pneumonia and sepsis, multiple abdominal reoperations for ischemic colitis and retroperitoneal abscess prolonged his recovery. He was discharged from the hospital after four months and is alive and well now 14 months after his operation. He is the first long-term survivor after IVOX therapy in Europe. IVOX may be successfully used in selected patients while the indications and it's potential role in the therapy of severe respiratory failure still need to be defined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In astrophysical regimes where the collisional excitation of hydrogen atoms is relevant, the cross-sections for the interactions of hydrogen atoms with electrons and protons are necessary for calculating line profiles and intensities. In particular, at relative velocities exceeding ∼1000 km s−1, collisional excitation by protons dominates over that by electrons. Surprisingly, the H–H+ cross-sections at these velocities do not exist for atomic levels of n≥ 4, forcing researchers to utilize extrapolation via inaccurate scaling laws. In this study, we present a faster and improved algorithm for computing cross-sections for the H–H+ collisional system, including excitation and charge transfer to the n≥ 2 levels of the hydrogen atom. We develop a code named BDSCX which directly solves the Schrödinger equation with variable (but non-adaptive) resolution and utilizes a hybrid spatial-Fourier grid. Our novel hybrid grid reduces the number of grid points needed from ∼4000n6 (for a ‘brute force’, Cartesian grid) to ∼2000n4 and speeds up the computation by a factor of ∼50 for calculations going up to n= 4. We present (l, m)-resolved results for charge transfer and excitation final states for n= 2–4 and for projectile energies of 5–80 keV, as well as fitting functions for the cross-sections. The ability to accurately compute H–H+ cross-sections to n= 4 allows us to calculate the Balmer decrement, the ratio of Hα to Hβ line intensities. We find that the Balmer decrement starts to increase beyond its largely constant value of 2–3 below 10 keV, reaching values of 4–5 at 5 keV, thus complicating its use as a diagnostic of dust extinction when fast (∼1000 km s−1) shocks are impinging upon the ambient interstellar medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Selective retina therapy (SRT) is a novel treatment for retinal pathologies, solely targeting the retinal pigment epithelium (RPE). During SRT, the detection of an immediate tissue reaction is challenging as tissue effects remain limited to intracellular RPE photodisruption. Time-resolved ultra-high axial resolution optical coherence tomography (OCT) is thus evaluated for the monitoring of dynamic optical changes at and around the RPE during SRT. Methods: An experimental OCT system with an ultra-high axial resolution of 1.78 µm was combined with an SRT system and time-resolved OCT M-scans of the target area were recorded from four patients undergoing SRT. OCT scans were analyzed and OCT morphology was correlated with findings in fluorescein angiography, fundus photography and cross-sectional OCT. Results: In cases where the irradiation caused RPE damage proven by fluorescein angiography, the lesions were well discernible in time-resolved OCT images but remained invisible in fundus photography and cross-sectional OCT acquired after treatment. If RPE damage was introduced, all applied SRT pulses led to detectable signal changes in the time-resolved OCT images. The extent of optical signal variation seen in the OCT data appeared to scale with the applied SRT pulse energy. Conclusion: The first clinical results proved that successful SRT irradiation induces detectable changes in the OCT M-scan signal while it remains invisible in conventional ophthalmoscopic imaging. Thus, real-time high-resolution OCT is a promising modality to monitor and analyze tissue effects introduced by selective retina therapy and may be used to guide SRT in an automatic feedback mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The population of space debris increased drastically during the last years. Collisions involving massive objects may produce large number of fragments leading to significantly growth of the space debris population. An effective remediation measure in order to stabilize the population in LEO, is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period and spin axis orientation. If we observe a rotating object, the observer sees different surface areas of the object which leads to changes in the measured intensity. Rotating objects will produce periodic brightness vari ations with frequencies which are related to the spin periods. Photometric monitoring is the real tool for remote diagnostics of the satellite rotation around its center of mass. This information is also useful, for example, in case of contingency. Moreover, it is also important to take into account the orientation of non-spherical body (e.g. space debris) in the numerical integration of its motion when a close approach with the another spacecr aft is predicted. We introduce the two databases of light curves: the AIUB data base, which contains about a thousand light curves of LEO, MEO and high-altitude debris objects (including a few functional objects) obtained over more than seven years, and the data base of the Astronomical Observatory of Odessa University (Ukraine), which contains the results of more than 10 years of photometric monitoring of functioning satellites and large space debris objects in low Earth orbit. AIUB used its 1m ZIMLAT telescope for all light curves. For tracking low-orbit satellites, the Astronomical Observatory of Odessa used the KT-50 telescope, which has an alt-azimuth mount and allows tracking objects moving at a high angular velocity. The diameter of the KT-50 main mirror is 0.5 m, and the focal length is 3 m. The Odessa's Atlas of light curves includes almost 5,5 thousand light curves for ~500 correlated objects from a time period of 2005-2014. The processing of light curves and the determination of the rotation period in the inertial frame is challenging. Extracted frequencies and reconstructed phases for some interesting targets, e.g. GLONASS satellites, for which also SLR data were available for confirmation, will be presented. The rotation of the Envisat satellite after its sudden failure will be analyzed. The deceleration of its rotation rate within 3 years is studied together with the attempt to determine the orientation of the rotation axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose In recent years, selective retina laser treatment (SRT), a sub-threshold therapy method, avoids widespread damage to all retinal layers by targeting only a few. While these methods facilitate faster healing, their lack of visual feedback during treatment represents a considerable shortcoming as induced lesions remain invisible with conventional imaging and make clinical use challenging. To overcome this, we present a new strategy to provide location-specific and contact-free automatic feedback of SRT laser applications. Methods We leverage time-resolved optical coherence tomography (OCT) to provide informative feedback to clinicians on outcomes of location-specific treatment. By coupling an OCT system to SRT treatment laser, we visualize structural changes in the retinal layers as they occur via time-resolved depth images. We then propose a novel strategy for automatic assessment of such time-resolved OCT images. To achieve this, we introduce novel image features for this task that when combined with standard machine learning classifiers yield excellent treatment outcome classification capabilities. Results Our approach was evaluated on both ex vivo porcine eyes and human patients in a clinical setting, yielding performances above 95 % accuracy for predicting patient treatment outcomes. In addition, we show that accurate outcomes for human patients can be estimated even when our method is trained using only ex vivo porcine data. Conclusion The proposed technique presents a much needed strategy toward noninvasive, safe, reliable, and repeatable SRT applications. These results are encouraging for the broader use of new treatment options for neovascularization-based retinal pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Net primary production (NPP) is commonly modeled as a function of chlorophyll concentration (Chl), even though it has been long recognized that variability in intracellular chlorophyll content from light acclimation and nutrient stress confounds the relationship between Chl and phytoplankton biomass. It was suggested previously that satellite estimates of backscattering can be related to phytoplankton carbon biomass (C) under conditions of a conserved particle size distribution or a relatively stable relationship between C and total particulate organic carbon. Together, C and Chl can be used to describe physiological state (through variations in Chl:C ratios) and NPP. Here, we fully develop the carbon-based productivity model (CbPM) to include information on the subsurface light field and nitracline depths to parameterize photoacclimation and nutrient stress throughout the water column. This depth-resolved approach produces profiles of biological properties (Chl, C, NPP) that are broadly consistent with observations. The CbPM is validated using regional in situ data sets of irradiance-derived products, phytoplankton chlorophyll: carbon ratios, and measured NPP rates. CbPM-based distributions of global NPP are significantly different in both space and time from previous Chl-based estimates because of the distinction between biomass and physiological influences on global Chl fields. The new model yields annual, areally integrated water column production of similar to 52 Pg C a(-1) for the global oceans.