887 resultados para Quality models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Australian Government has committed $970 million over 5 years to fund the expansion of preschool education and has established a National Early Childhood Education Partnership Agreement with States and Territories to achieve universal preschool access by 2013. The Partnership Agreement acknowledges the role of State and Territory Government in preschool education, and different approaches to preschool provision. It also recognises differences in current preschool participation rates across states and territories. This paper offers snapshots of a number of different models of preschool provision, spanning traditional sessional approaches to some integrated and innovative approaches within the long day care context. The paper explores the newer long day care model and offers recommendations for the delivery of preschool education within this different context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis addresses computational challenges arising from Bayesian analysis of complex real-world problems. Many of the models and algorithms designed for such analysis are ‘hybrid’ in nature, in that they are a composition of components for which their individual properties may be easily described but the performance of the model or algorithm as a whole is less well understood. The aim of this research project is to after a better understanding of the performance of hybrid models and algorithms. The goal of this thesis is to analyse the computational aspects of hybrid models and hybrid algorithms in the Bayesian context. The first objective of the research focuses on computational aspects of hybrid models, notably a continuous finite mixture of t-distributions. In the mixture model, an inference of interest is the number of components, as this may relate to both the quality of model fit to data and the computational workload. The analysis of t-mixtures using Markov chain Monte Carlo (MCMC) is described and the model is compared to the Normal case based on the goodness of fit. Through simulation studies, it is demonstrated that the t-mixture model can be more flexible and more parsimonious in terms of number of components, particularly for skewed and heavytailed data. The study also reveals important computational issues associated with the use of t-mixtures, which have not been adequately considered in the literature. The second objective of the research focuses on computational aspects of hybrid algorithms for Bayesian analysis. Two approaches will be considered: a formal comparison of the performance of a range of hybrid algorithms and a theoretical investigation of the performance of one of these algorithms in high dimensions. For the first approach, the delayed rejection algorithm, the pinball sampler, the Metropolis adjusted Langevin algorithm, and the hybrid version of the population Monte Carlo (PMC) algorithm are selected as a set of examples of hybrid algorithms. Statistical literature shows how statistical efficiency is often the only criteria for an efficient algorithm. In this thesis the algorithms are also considered and compared from a more practical perspective. This extends to the study of how individual algorithms contribute to the overall efficiency of hybrid algorithms, and highlights weaknesses that may be introduced by the combination process of these components in a single algorithm. The second approach to considering computational aspects of hybrid algorithms involves an investigation of the performance of the PMC in high dimensions. It is well known that as a model becomes more complex, computation may become increasingly difficult in real time. In particular the importance sampling based algorithms, including the PMC, are known to be unstable in high dimensions. This thesis examines the PMC algorithm in a simplified setting, a single step of the general sampling, and explores a fundamental problem that occurs in applying importance sampling to a high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of the estimate under conditions on the importance function. Additionally, the exponential growth of the asymptotic variance with the dimension is demonstrated and we illustrates that the optimal covariance matrix for the importance function can be estimated in a special case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To describe quality of life (QOL) over a 12-month period among women with breast cancer, consider the association between QOL and overall survival (OS), and explore characteristics associated with QOL declines. Methods A population-based sample of Australian women (n=287) with invasive, unilateral breast cancer (Stage I+), was observed prospectively for a median of 6.6 years. QOL was assessed at six, 12 and 18 months post-diagnosis, using the Functional Assessment of Cancer Therapy, Breast (FACT-B+4) questionnaire. Raw scores for the FACT-B+4 and subscales were computed and individuals were categorized according to whether QOL declined, remained stable or improved between six and 18 months. Kaplan-Meier and Cox proportional hazards survival methods were used to estimate OS and its associations with QOL. Logistic regression models identified factors associated with QOL decline. Results Within FACT-B+4 sub-scales, between 10% and 23% of women showed declines in QOL. Following adjustment for established prognostic factors, emotional wellbeing and FACT-B+4 scores at six months post-diagnosis were associated with OS (p<0.05). Declines in physical (p<0.01) or functional (p=0.02) well-being between six and 18 months post-diagnosis were also associated significantly with OS. Receiving multiple forms of adjuvant treatment, a perception of not handling stress well and reporting one or more other major life events at six months post-diagnosis were factors associated with declines in QOL in multivariable analyses. Conclusions Interventions targeted at preventing QOL declines may ultimately improve quantity as well as quality of life following breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Length of hospital stay (LOS) is a surrogate marker for patients' well-being during hospital treatment and is associated with health care costs. Identifying pretreatment factors associated with LOS in surgical patients may enable early intervention in order to reduce postoperative LOS. Methods This cohort study enrolled 157 patients with suspected or proven gynecological cancer at a tertiary cancer centre (2004-2006). Before commencing treatment, the scored Patient Generated - Subjective Global Assessment (PG-SGA) measuring nutritional status and the Functional Assessment of Cancer Therapy-General (FACT-G) scale measuring quality of life (QOL) were completed. Clinical and demographic patient characteristics were prospectively obtained. Patients were grouped into those with prolonged LOS if their hospital stay was greater than the median LOS and those with average or below average LOS. Results Patients' mean age was 58 years (SD 14 years). Preoperatively, 81 (52%) patients presented with suspected benign disease/pelvic mass, 23 (15%) with suspected advanced ovarian cancer, 36 (23%) patients with suspected endometrial and 17 (11%) with cervical cancer, respectively. In univariate models prolonged LOS was associated with low serum albumin or hemoglobin, malnutrition (PG-SGA score and PG-SGA group B or C), low pretreatment FACT-G score, and suspected diagnosis of cancer. In multivariable models, PG-SGA group B or C, FACT-G score and suspected diagnosis of advanced ovarian cancer independently predicted LOS. Conclusions Malnutrition, low quality of life scores and being diagnosed with advanced ovarian cancer are the major determinants of prolonged LOS amongst gynecological cancer patients. Interventions addressing malnutrition and poor QOL may decrease LOS in gynecological cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, the performance of construction projects, including their sustainability performance, does not meet optimal expectations. One aspect of this is the performance of the participants who are independent and make a significance impact on overall project outcomes. Of these participants, the client is traditionally the owner of the project, the architect or engineer is engaged as the lead designer and a contractor is selected to construct the facilities. Generally, the performance of the participants is gauged by considering three main factors, namely, time, cost and quality. As the level of satisfaction is a subjective issue, it is rarely used in the performance evaluation of construction work. Recently, various approaches to the measurement of satisfaction have been made in an attempt to determine the performance of construction project outcomes - for instance, client satisfaction, customer satisfaction, contractor satisfaction, occupant satisfaction and home buyer satisfaction. These not only identify the performance of the construction project but are also used to improve and maintain relationships. In addition, these assessments are necessary for the continuous improvement and enhanced cooperation of participants. The measurement of satisfaction levels primarily involves expectations and perceptions. An expectation can be regarded as a comparative standard of different needs, motives and beliefs, while a perception is a subjective interpretation that is influenced by moods, experiences and values. This suggests that the disparity between perceptions and expectations may possibly be used to represent different levels of satisfaction. However, this concept is rather new and in need of further investigation. This chapter examines the methods commonly practised in measuring satisfaction levels today and the advantages of promoting these methods. The results provide a preliminary review of the advantages of satisfaction measurement in the construction industry and recommendations are made concerning the most appropriate methods to use in identifying the performance of project outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss an advanced, 3D groundwater visualisation and animation system that allows scientists, government agencies and community groups to better understand the groundwater processes that effect community planning and decision-making. The system is unique in that it has been designed to optimise community engagement. Although it incorporates a powerful visualisation engine, this open-source system can be freely distributed and boasts a simple user interface allowing individuals to run and investigate the models on their own PCs and gain intimate knowledge of the groundwater systems. The initial version of the Groundwater Visualisation System (GVS v1.0), was developed from a coastal delta setting (Bundaberg, QLD), and then applied to a basalt catchment area (Obi Obi Creek, Maleny, QLD). Several major enhancements have been developed to produce higher quality visualisations, including display of more types of data, support for larger models and improved user interaction. The graphics and animation capabilities have also been enhanced, notably the display of boreholes, depth logs and time-series water level surfaces. The GVS software remains under continual development and improvement

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process modeling is a central element in any approach to Business Process Management (BPM). However, what hinders both practitioners and academics is the lack of support for assessing the quality of process models – let alone realizing high quality process models. Existing frameworks are highly conceptual or too general. At the same time, various techniques, tools, and research results are available that cover fragments of the issue at hand. This chapter presents the SIQ framework that on the one hand integrates concepts and guidelines from existing ones and on the other links these concepts to current research in the BPM domain. Three different types of quality are distinguished and for each of these levels concrete metrics, available tools, and guidelines will be provided. While the basis of the SIQ framework is thought to be rather robust, its external pointers can be updated with newer insights as they emerge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is recognized that, in general, the performance of construction projects does not meet optimal expectations. One aspect of this is the performance of each participant, which is interdependent and makes a significance impact on overall project outcomes. Of these, the client is traditionally the owner of the project, the architect or engineer is engaged as the lead designer and a contractor is selected to construct the facilities. Generally, the performance of the participants is gauged by considering three main factors, namely time, cost and quality. As the level of satisfaction is a subjective measurement, it is rarely used in the performance evaluation of construction work. Recently, various approaches to the measurement of satisfaction have been made in attempting to determine the performance of construction project outcomes – for instance client satisfaction, consultant satisfaction, contractor satisfaction, customer satisfaction and home buyer satisfaction. These not only identify the performance of the construction project, but are also used to improve and maintain relationships. In addition, these assessments are necessary for continuous improvement and enhanced cooperation between participants. The measurement of satisfaction levels primarily involves expectations and perceptions. An expectation can be regarded as a comparison standard of different needs, motives and beliefs, while a perception is a subjective interpretation that is influenced by moods, experiences and values. This suggests that the disparity between perceptions and expectations may be used to represent different levels of satisfaction. However, this concept is rather new and in need of further investigation. This paper examines the current methods commonly practiced in measuring satisfaction level and the advantages of promoting these methods. The results provided are a preliminary review of the advantages of satisfaction measurement in the construction industry and recommendations are made concerning the most appropriate methods for use in identifying the performance of project outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three recent papers published in Chemical Engineering Journal studied the solution of a model of diffusion and nonlinear reaction using three different methods. Two of these studies obtained series solutions using specialized mathematical methods, known as the Adomian decomposition method and the homotopy analysis method. Subsequently it was shown that the solution of the same particular model could be written in terms of a transcendental function called Gauss’ hypergeometric function. These three previous approaches focused on one particular reactive transport model. This particular model ignored advective transport and considered one specific reaction term only. Here we generalize these previous approaches and develop an exact analytical solution for a general class of steady state reactive transport models that incorporate (i) combined advective and diffusive transport, and (ii) any sufficiently differentiable reaction term R(C). The new solution is a convergent Maclaurin series. The Maclaurin series solution can be derived without any specialized mathematical methods nor does it necessarily involve the computation of any transcendental function. Applying the Maclaurin series solution to certain case studies shows that the previously published solutions are particular cases of the more general solution outlined here. We also demonstrate the accuracy of the Maclaurin series solution by comparing with numerical solutions for particular cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process models in organizational collections are typically modeled by the same team and using the same conventions. As such, these models share many characteristic features like size range, type and frequency of errors. In most cases merely small samples of these collections are available due to e.g. the sensitive information they contain. Because of their sizes, these samples may not provide an accurate representation of the characteristics of the originating collection. This paper deals with the problem of constructing collections of process models, in the form of Petri nets, from small samples of a collection for accurate estimations of the characteristics of this collection. Given a small sample of process models drawn from a real-life collection, we mine a set of generation parameters that we use to generate arbitrary-large collections that feature the same characteristics of the original collection. In this way we can estimate the characteristics of the original collection on the generated collections.We extensively evaluate the quality of our technique on various sample datasets drawn from both research and industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tear film plays an important role preserving the health of the ocular surface and maintaining the optimal refractive power of the cornea. Moreover dry eye syndrome is one of the most commonly reported eye health problems. This syndrome is caused by abnormalities in the properties of the tear film. Current clinical tools to assess the tear film properties have shown certain limitations. The traditional invasive methods for the assessment of tear film quality, which are used by most clinicians, have been criticized for the lack of reliability and/or repeatability. A range of non-invasive methods of tear assessment have been investigated, but also present limitations. Hence no “gold standard” test is currently available to assess the tear film integrity. Therefore, improving techniques for the assessment of the tear film quality is of clinical significance and the main motivation for the work described in this thesis. In this study the tear film surface quality (TFSQ) changes were investigated by means of high-speed videokeratoscopy (HSV). In this technique, a set of concentric rings formed in an illuminated cone or a bowl is projected on the anterior cornea and their reflection from the ocular surface imaged on a charge-coupled device (CCD). The reflection of the light is produced in the outer most layer of the cornea, the tear film. Hence, when the tear film is smooth the reflected image presents a well structure pattern. In contrast, when the tear film surface presents irregularities, the pattern also becomes irregular due to the light scatter and deviation of the reflected light. The videokeratoscope provides an estimate of the corneal topography associated with each Placido disk image. Topographical estimates, which have been used in the past to quantify tear film changes, may not always be suitable for the evaluation of all the dynamic phases of the tear film. However the Placido disk image itself, which contains the reflected pattern, may be more appropriate to assess the tear film dynamics. A set of novel routines have been purposely developed to quantify the changes of the reflected pattern and to extract a time series estimate of the TFSQ from the video recording. The routine extracts from each frame of the video recording a maximized area of analysis. In this area a metric of the TFSQ is calculated. Initially two metrics based on the Gabor filter and Gaussian gradient-based techniques, were used to quantify the consistency of the pattern’s local orientation as a metric of TFSQ. These metrics have helped to demonstrate the applicability of HSV to assess the tear film, and the influence of contact lens wear on TFSQ. The results suggest that the dynamic-area analysis method of HSV was able to distinguish and quantify the subtle, but systematic degradation of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions. Thus, the HSV method appears to be a useful technique for quantitatively investigating the effects of contact lens wear on the TFSQ. Subsequently a larger clinical study was conducted to perform a comparison between HSV and two other non-invasive techniques, lateral shearing interferometry (LSI) and dynamic wavefront sensing (DWS). Of these non-invasive techniques, the HSV appeared to be the most precise method for measuring TFSQ, by virtue of its lower coefficient of variation. While the LSI appears to be the most sensitive method for analyzing the tear build-up time (TBUT). The capability of each of the non-invasive methods to discriminate dry eye from normal subjects was also investigated. The receiver operating characteristic (ROC) curves were calculated to assess the ability of each method to predict dry eye syndrome. The LSI technique gave the best results under both natural blinking conditions and in suppressed blinking conditions, which was closely followed by HSV. The DWS did not perform as well as LSI or HSV. The main limitation of the HSV technique, which was identified during the former clinical study, was the lack of the sensitivity to quantify the build-up/formation phase of the tear film cycle. For that reason an extra metric based on image transformation and block processing was proposed. In this metric, the area of analysis was transformed from Cartesian to Polar coordinates, converting the concentric circles pattern into a quasi-straight lines image in which a block statistics value was extracted. This metric has shown better sensitivity under low pattern disturbance as well as has improved the performance of the ROC curves. Additionally a theoretical study, based on ray-tracing techniques and topographical models of the tear film, was proposed to fully comprehend the HSV measurement and the instrument’s potential limitations. Of special interested was the assessment of the instrument’s sensitivity under subtle topographic changes. The theoretical simulations have helped to provide some understanding on the tear film dynamics, for instance the model extracted for the build-up phase has helped to provide some insight into the dynamics during this initial phase. Finally some aspects of the mathematical modeling of TFSQ time series have been reported in this thesis. Over the years, different functions have been used to model the time series as well as to extract the key clinical parameters (i.e., timing). Unfortunately those techniques to model the tear film time series do not simultaneously consider the underlying physiological mechanism and the parameter extraction methods. A set of guidelines are proposed to meet both criteria. Special attention was given to a commonly used fit, the polynomial function, and considerations to select the appropriate model order to ensure the true derivative of the signal is accurately represented. The work described in this thesis has shown the potential of using high-speed videokeratoscopy to assess tear film surface quality. A set of novel image and signal processing techniques have been proposed to quantify different aspects of the tear film assessment, analysis and modeling. The dynamic-area HSV has shown good performance in a broad range of conditions (i.e., contact lens, normal and dry eye subjects). As a result, this technique could be a useful clinical tool to assess tear film surface quality in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of a series of tension tests on CFRP bonded steel plate double strap joints. The main aim of this research is to provide detailed understanding of bond characteristics using experimental and numerical analysis of strengthened double strap joints under tension. A parametric study has been performed by numerical modelling with the variables of CFRP bond lengths, adhesive maximum strain and adhesive layer thicknesses. Finally, bond-slip models are proposed for three different types of adhesives within the range of the parametric study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/aim In response to the high burden of disease associated with chronic heart failure (CHF), in particular the high rates of hospital admissions, dedicated CHF management programs (CHF-MP) have been developed. Over the past five years there has been a rapid growth of CHF-MPs in Australia. Given the apparent mismatch between the demand for, and availability of CHF-MPs, this paper has been designed to discuss the accessibility to and quality of current CHF-MPs in Australia. Methods The data presented in this report has been combined from the research of the co-authors, in particular a review of the inequities in access to chronic heart failure which utilised geographical information systems (GIS) and the survey of heterogeneity in quality and service provision in Australian. Results Of the 62 CHF-MPs surveyed in this study 93% (58) centres had been located areas that are rated as Highly Accessible. This result indicated that most of the CHF-MPs have been located in capital cities or large regional cities. Six percent (4 CHF-MPs) had been located in Accessible areas which were country towns or cities. No CHF-MPs had been established outside of cities to service the estimated 72,000 individuals with CHF living in rural and remote areas. 16% of programs recruited NYHA Class I patients and of these 20% lacked confirmation (echocardiogram) of their diagnosis. Conclusion Overall, these data highlight the urgent need to provide equitable access to CHF-MP's. When establishing CHF-MPs consideration of current evidence based models to ensure quality in practice.