976 resultados para QUINONE POOL
Resumo:
Lot6p (EC 1.5.1.39; Ylr011wp) is the sole quinone oxidoreductase in the budding yeast, Saccharomyces cerevisiae. Using hexahistidine tagged, recombinant Lot6p, we determined the steady-state enzyme kinetic parameters with both NADH and NADPH as electron donors; no cooperativity was observed with these substrates. The NQO1 inhibitor curcumin, the NQO2 inhibitor resveratrol, the bacterial nitroreductase inhibitor nicotinamide and the phosphate mimic vanadate all stabilise the enzyme towards thermal denaturation as judged by differential scanning fluorimetry. All except vanadate have no observable effect on the chemical cross-linking of the two subunits of the Lot6p dimer. These compounds all inhibit Lot6p's oxidoreductase activity, and all except nicotinamide exhibit negative cooperativity. Molecular modelling suggests that curcumin, resveratrol and nicotinamide all bind over the isoalloxazine ring of the FMN cofactor in Lot6p. Resveratrol was predicted to contact an α-helix that links the two active sites. Mutation of Gly-142 (which forms part of this helix) to serine does not greatly affect the thermal stability of the enzyme. However, this variant shows less cooperativity towards resveratrol than the wild type. This suggests a plausible hypothesis for the transmission of information between the subunits and, thus, the molecular mechanism of negative cooperativity in Lot6p.
Resumo:
Despite the extensive geographical range of palaeolimnological studies designed to assess the extent of surface water acidification in the United Kingdom during the 1980s, little attention was paid to the status of surface waters in the North York Moors (NYM). In this paper, we present sediment core data from a moorland pool in the NYM that provide a record of air pollution contamination and surface water acidification. The 41-cm-long core was divided into three lithostratigraphic units. The lower two comprise peaty soils and peats, respectively, that date to between approximately 8080 and 6740 cal. BP. The uppermost unit comprises peaty lake muds dating from between approximately ad 1790 and the present day (ad 2006). The lower two units contain pollen dominated by forest taxa, whereas the uppermost unit contains pollen indicative of open landscape conditions similar to those of the present. Heavy metal, spheroidal carbonaceous particle, mineral magnetics and stable isotope analysis of the upper sediments show clear evidence of contamination by air pollutants derived from fossil-fuel combustion over the last c. 150years, and diatom analysis indicates that the naturally acidic pool became more acidic during the 20th century. We conclude that the exceptionally acidic surface waters of the pool at present (pH=c. 4.1) are the result of a long history of air pollution and not because of naturally acidic local conditions. We argue that the highly acidic surface waters elsewhere in the NYM are similarly acidified and that the lack of evidence of significant recovery from acidification, despite major reductions in the emissions of acidic gases that have taken place over the last c. 30years, indicates the continuing influence of pollutant sulphur stored in catchment peats, a legacy of over 150years of acid deposition.
Resumo:
Photoexcited electrochemically generated quinone radical anions reduced 1,2-dibromobenzene to bromobenzene, 1,4-dibromobenzene to bromobenzene and 4-chlorobenzonitrile to benzonitrile. In the presence of anthracene, 2-bromophenyl-, 4-bromophenyl- and 4-cyanophenyl-anthracenes were formed. With acetaldehyde, acetone, acetophenone, benzaldehyde and benzophenone, the major products were the corresponding pinacols, with small amounts of the two-electron secondary alcohols. In acetonitrile as solvent, cinnamonitriles, hydrocinnamonitriles and phenylglutaronitriles were formed in addition to the alcohols. Glyoxylic acid was reduced to tartaric, glycolic and malic acids. The reduction of CO2 was unsuccessful.
Resumo:
Cyclic voltammograms of quinones were recorded in acetonitrile in the presence of various substrates: carbonyl compounds, halobenzenes, Methyl Viologen and Neutral Red. When illuminated with light of λ >410 nm, catalytic waves were observed. From the ratio of the catalysed to uncatalysed peak current, electron transfer rate constants were calculated using the working curves of Saveant and coworkers. The values of these rate constants were compared with the values obtained by Shukla and Rusling for different systems using a similar method and with quenching rate constants calculated using Rehm-Weller-Marcus theory.
Resumo:
The photoelectrochemistry of quinone radical anions has been demonstrated qualitatively by the photoassisted reduction of methyl viologen with benzoquinone and of neutral red with chloranil. Data were then collected for the estimation of quenching rate constants using Marcus-Weller theory. Reduction potentials of seven quinones were obtained in four solvents (and two aqueous mixtures) by cyclic voltammetry. The solvent effects on these potentials were studied by fitting them to the Taft relationship. The effects of proton donors were also noted. Absorption spectra of the radical anions were measured and the solvent effects noted and commented upon. From the molar absorption coefficients of the radical anions, the mean lifetimes of the excited states were estimated. Fluorescence spectra were obtained for anthraquinone and naphthaquinone radical anions and excitation energies were calculated. These values were estimated for the other quinones. Values of redox potentials for the excited radical anions were thence obtained. The Gibbs energies of the electron transfers between the excited quinone radical anions and the various substrates were obtained and hence the Gibbs energies of activation were calculated using the Marcus equation. The quenching rate constants were calculated using the Rehm-Weller equation and plotted vs. ΔG giving a characteristic Marcus plot including some data in the inverted region. The significance of the inverted region is discussed.
Resumo:
We introduce a new parallel pattern derived from a specific application domain and show how it turns out to have application beyond its domain of origin. The pool evolution pattern models the parallel evolution of a population subject to mutations and evolving in such a way that a given fitness function is optimized. The pattern has been demonstrated to be suitable for capturing and modeling the parallel patterns underpinning various evolutionary algorithms, as well as other parallel patterns typical of symbolic computation. In this paper we introduce the pattern, we discuss its implementation on modern multi/many core architectures and finally present experimental results obtained with FastFlow and Erlang implementations to assess its feasibility and scalability.
Resumo:
New radiocarbon dates for the Neolithic settlement at Pool on Sanday, Orkney, are interpreted in a formal chronological framework. Phases 2.2 and 2.3, during which flat-based Grooved Ware pottery with incised decoration developed, have been modelled as probably dating to between the 31st and 28th centuries cal bc. There followed a hiatus of a century or so, before the resumption of occupation in Phase 3, which has a different Grooved Ware style featuring the use of applied decoration. This has been modelled as probably dating from the 26th to the 24th centuries cal bc. The implications of these results are discussed for the emergence and development of Grooved Ware, and for the trajectory of settlement and monumentality on Sanday.
Resumo:
Trihalomethanes (THMs) are widely referred and studied as disinfection by-products (DBPs). The THMs that are most commonly detected are chloroform (TCM), bromodichloromethane (BDCM), chlorodibromomethane (CDBM), and bromoform (TBM). Several studies regarding the determination of THMs in swimming pool water and air samples have been published. This paper reviews the most recent work in this field, with a special focus on water and air sampling, sample preparation and analytical determination methods. An experimental study has been developed in order to optimize the headspace solid-phasemicroextraction (HS-SPME) conditions of TCM, BDCM, CDBM and TBM from water samples using a 23 factorial design. An extraction temperature of 45 °C, for 25min, and a desorption time of 5 min were found to be the best conditions. Analysis was performed by gas chromatography with an electron capture detector (GC-ECD). The method was successfully applied to a set of 27 swimming pool water samples collected in the Oporto area (Portugal). TCM was the only THM detected with levels between 4.5 and 406.5 μg L−1. Four of the samples exceeded the guideline value for total THMs in swimming pool water (100 μgL−1) indicated by the Portuguese Health Authority.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Herb de Bray standing at the edge of the soon to be completed pool of the Elanor Misner Aquatic Center.
Resumo:
The Brock pool as it begins to be filled with water.
Resumo:
Exposed escarpment rock during the construction of the pool.
Resumo:
Olympic size swimming pool gets filled with water.