134 resultados para Prothrombin
Resumo:
INTRODUCTION: Acute psychosocial stress accelerates blood coagulation and elicits hemoconcentration which mechanisms are implicated in acute coronary thrombotic events. We investigated the extent to which the change in prothrombotic measures with acute stress reflects hemoconcentration and genuine activation of coagulation. MATERIAL AND METHODS: Twenty-one middle-aged healthy men underwent three sessions of a combined speech and mental arithmetic task with one-week intervals. Coagulation and plasma volume were assessed at baseline, immediately post-stress, and 45 min post-stress at sessions one and three. Measures of both visits were aggregated to enhance robustness of individual biological stress responses. Changes in eight coagulation measures with and without adjustment for simultaneous plasma volume shift were compared. RESULTS: From baseline to immediately post-stress, unadjusted levels of fibrinogen (p=0.028), clotting factor VII activity (FVII:C) (p=0.001), FVIII:C (p<0.001), FXII:C (p<0.001), and von Willebrand factor (VWF) (p=0.008) all increased. Taking into account hemoconcentration, fibrinogen (p=0.020) and FVII:C levels (p=0.001) decreased, activated partial prothrombin time (APPT) shortened (p<0.001) and prothrombin time (PT) was prolonged (p<0.001). Between baseline and 45 min post-stress, unadjusted (p=0.050) and adjusted (p=0.001) FVIII:C levels increased, adjusted APTT was prolonged (p=0.017), and adjusted PT was shortened (p=0.033). D-dimer levels did not significantly change over time. CONCLUSIONS: Adjustment for stress-hemoconcentration altered the course of unadjusted levels of several prothrombotic factors. After adjustment for hemoconcentration, APPT was shortened immediately post-stress, whereas 45 min post-stress, FVIII:C was increased and PT was shortened. Procoagulant changes to acute stress may reflect both hemoconcentration and genuine activation of coagulation molecules and pathways.
Resumo:
BACKGROUND While the assessment of analytical precision within medical laboratories has received much attention in scientific enquiry, the degree of as well as the sources causing variation between them remains incompletely understood. In this study, we quantified the variance components when performing coagulation tests with identical analytical platforms in different laboratories and computed intraclass correlations coefficients (ICC) for each coagulation test. METHODS Data from eight laboratories measuring fibrinogen twice in twenty healthy subjects with one out of 3 different platforms and single measurements of prothrombin time (PT), and coagulation factors II, V, VII, VIII, IX, X, XI and XIII were analysed. By platform, the variance components of (i) the subjects, (ii) the laboratory and the technician and (iii) the total variance were obtained for fibrinogen as well as (i) and (iii) for the remaining factors using ANOVA. RESULTS The variability for fibrinogen measurements within a laboratory ranged from 0.02 to 0.04, the variability between laboratories ranged from 0.006 to 0.097. The ICC for fibrinogen ranged from 0.37 to 0.66 and from 0.19 to 0.80 for PT between the platforms. For the remaining factors the ICC's ranged from 0.04 (FII) to 0.93 (FVIII). CONCLUSIONS Variance components that could be attributed to technicians or laboratory procedures were substantial, led to disappointingly low intraclass correlation coefficients for several factors and were pronounced for some of the platforms. Our findings call for sustained efforts to raise the level of standardization of structures and procedures involved in the quantification of coagulation factors.
Resumo:
The new oral anticoagulants (NOACs) represent alternative antithrombotic agents for prophylaxis and therapy of thromboembolic diseases. They act either by inhibition of the clotting factor Xa or IIa (thrombin). As a consequence, they influence several coagulation assays (for example prothrombin time, activated partial thromboplastin time). Because of the short half-life of these new agents, these changes show great variations in the course of 24 hours. Furthermore, there are significant differences of laboratory results depending on the used reagents. We explain the influence of apixaban, rivaroxaban (factor Xa inhibitors) and dabigatran (thrombin inhibitor) on the most commonly used coagulation assays. Besides we show that this influence depends on the way of action of the drug as well as on the principle of the coagulation assay. Being aware of this relationships helps to interpret the results of coagulation assays under influence of NOACs correctly.
Resumo:
Habituelle Aborte Ein Spontanabort ereignet sich bei etwa 15 % aller klinisch festgestellten Schwangerschaften. Vom betroffenen Paar wird er ausnahmslos als äußerst traumatisch erlebt. Insbesondere gilt dies beim habituellen Abort (≥ 3 Aborte in Folge), der etwa 1 % der Schwangerschaften betrifft. In der Hoffnung, weitere Aborte zu verhindern, werden entsprechend große Anstrengungen unternommen, die jeweilige Ursache zu eruieren. Gerinnungsphysiologische Einflüsse Pathophysiologisch spielen nebst organischen und zytogenetischen Anomalien beim Fetus vermutlich auch gerinnungsphysiologische Einflüsse eine ursächliche Rolle, insbesondere erworbene und hereditäre prokoagulatorische Störungen. Diese können das im Rahmen der Schwangerschaft schon physiologisch erhöhte Gerinnungspotenzial zusätzlich verstärken und damit die Blutversorgung des Fetus potenziell behindern, was mit der Gefahr seiner Abstoßung einhergeht. Thrombophilie Auch wenn der diesbezügliche Beweis im Einzelfall schwierig zu erbringen ist, erscheint eine ungünstige Beeinflussung des Abortrisikos durch erworbene und hereditäre Thrombophilien plausibel. Daraus ergibt sich unschwer die Folgerung oder Hoffnung, dass antiaggregatorische und antikoagulatorische Maßnahmen eine günstige Wirkung haben könnten. Der vorliegende Beitrag geht auf die bekannten sowie teils auch nur vermuteten pathophysiologischen Mechanismen und die sich daraus ergebenden therapeutischen bzw. präventiven Möglichkeiten ein.
Resumo:
BACKGROUND Dysregulation of the coagulation system due to inflammatory responses and cross-species molecular incompatibilities represents a major obstacle to successful xenotransplantation. We hypothesized that complement inhibition mediated by transgenic expression of human CD46 in pigs might also regulate the coagulation and fibrinolysis cascades and tested this in ex vivo human-to-pig xenoperfusions. METHODS Forelimbs of wild-type and hCD46/HLA-E double transgenic pigs were ex vivo xenoperfused for 12 hours with whole heparinized human blood. Muscle biopsies were stained for galactose-α1,3-galactose, immunoglobulin M, immunoglobulin G, complement, fibrin, tissue factor, fibrinogen-like protein 2, tissue plasminogen activator (tPA), and plasminogen activator inhibitor (PAI)-1. The PAI-1/tPA complexes, D-dimers, and prothrombin fragment F1 + 2 were measured in plasma samples after ex vivo xenoperfusion. RESULTS No differences of galactose expression or deposition of immunoglobulin M and immunoglobulin G were found in xenoperfused tissues of wild type and transgenic limbs. In contrast, significantly lower deposition of C5b-9 (P < 0.0001), fibrin (P = 0.009), and diminished expression of tissue factor (P = 0.005) and fibrinogen-like protein 2 (P = 0.028) were found in xenoperfused tissues of transgenic limbs. Levels of prothrombin fragment F1 + 2 (P = 0.031) and D-dimers (P = 0.044) were significantly lower in plasma samples obtained from transgenic as compared to wild-type pig limb perfusions. The expression of the fibrinolytic marker tPA was significantly higher (P = 0.009), whereas PAI-1 expression (P = 0.022) and PAI-1/tPA complexes in plasma (P = 0.015) were lower after transgenic xenoperfusion as compared to wild-type xenoperfusions. CONCLUSIONS In this human-to-pig xenoperfusion model, complement inhibition by transgenic hCD46 expression led to a significant inhibition of procoagulant and antifibrinolytic pathways.
Thrombophilia and risk of VTE recurrence according to the age at the time of first VTE manifestation
Resumo:
BACKGROUND Whether screening for thrombophilia is useful for patients after a first episode of venous thromboembolism (VTE) is a controversial issue. However, the impact of thrombophilia on the risk of recurrence may vary depending on the patient's age at the time of the first VTE. PATIENTS AND METHODS Of 1221 VTE patients (42 % males) registered in the MAISTHRO (MAin-ISar-THROmbosis) registry, 261 experienced VTE recurrence during a 5-year follow-up after the discontinuation of anticoagulant therapy. RESULTS Thrombophilia was more common among patients with VTE recurrence than those without (58.6 % vs. 50.3 %; p = 0.017). Stratifying patients by the age at the time of their initial VTE, Cox proportional hazards analyses adjusted for age, sex and the presence or absence of established risk factors revealed a heterozygous prothrombin (PT) G20210A mutation (hazard ratio (HR) 2.65; 95 %-confidence interval (CI) 1.71 - 4.12; p < 0.001), homozygosity/double heterozygosity for the factor V Leiden and/or PT mutation (HR 2.35; 95 %-CI 1.09 - 5.07, p = 0.030), and an antithrombin deficiency (HR 2.12; 95 %-CI 1.12 - 4.10; p = 0.021) to predict recurrent VTE in patients aged 40 years or older, whereas lupus anticoagulants (HR 3.05; 95%-CI 1.40 - 6.66; p = 0.005) increased the risk of recurrence in younger patients. Subgroup analyses revealed an increased risk of recurrence for a heterozygous factor V Leiden mutation only in young females without hormonal treatment whereas the predictive value of a heterozygous PT mutation was restricted to males over the age of 40 years. CONCLUSIONS Our data do not support a preference of younger patients for thrombophilia testing after a first venous thromboembolic event.
Resumo:
Chemerin is a well-established modulator of immune cell function and its serum levels are induced in inflammatory diseases. Liver cirrhosis is associated with inflammation which is aggravated by portal hypertension. The objective of this study was to evaluate whether chemerin is induced in patients with more severe liver cirrhosis and portal hypertension. Chemerin has been measured by ELISA in the portal venous serum (PVS), systemic venous serum (SVS) and hepatic venous serum (HVS) of 45 patients with liver cirrhosis. Chemerin is higher in HVS compared to PVS in accordance with our recently published finding. SVS, HVS and PVS chemerin decline in patients with more advanced liver injury defined by the CHILD-PUGH score. Hepatic chemerin has been determined in a small cohort and is similarly expressed in normal and cirrhotic liver. MELD score and serum markers of liver and kidney function do not correlate with chemerin. There is a positive correlation of chemerin in all compartments with Quick prothrombin time and of SVS chemerin with systolic blood pressure. PVS chemerin is induced in patients with modest/massive ascites but this does not translate into higher HVS and SVS levels. Chemerin is not associated with variceal size. Reduction of portal pressure by transjugular intrahepatic portosystemic shunt does not affect chemerin levels. These data show that low chemerin in patients with more severe liver cirrhosis is associated with reduced Quick prothrombin time.
Resumo:
OBJECTIVE To evaluate horses with atrial fibrillation for hypercoagulability; plasma D-dimer concentrations, as a marker of a procoagulant state; and a relationship between coagulation profile results and duration of atrial fibrillation or presence of structural heart disease. DESIGN Case-control study. ANIMALS Plasma samples from 42 horses (25 with atrial fibrillation and 17 without cardiovascular or systemic disease [control group]). PROCEDURES Results of hematologic tests (ie, plasma fibrinogen and D-dimer concentrations, prothrombin and activated partial thromboplastin times, and antithrombin activity) in horses were recorded to assess coagulation and fibrinolysis. Historical and clinical variables, as associated with a hypercoagulable state in other species, were also recorded. RESULTS Horses with atrial fibrillation and control horses lacked clinical signs of hypercoagulation or thromboembolism. Compared with control horses, horses with atrial fibrillation had significantly lower antithrombin activity. No significant differences in plasma fibrinogen and D-dimer concentrations and prothrombin and activated partial thromboplastin times existed between horse groups. In horses with atrial fibrillation versus control horses, a significantly larger proportion had an abnormal plasma D-dimer concentration (10/25 vs 2/17), test results indicative of subclinical activated coagulation (18/25 vs 6/17), or abnormal coagulation test results (25/121 vs 7/85), respectively. CONCLUSIONS AND CLINICAL RELEVANCE Horses with atrial fibrillation did not have clinical evidence of a hypercoagulable state, but a higher proportion of horses with atrial fibrillation, compared with control horses, did have subclinical activated coagulation on the basis of standard coagulation test results.
Resumo:
The studies completed herein explore different phenotypes related to the genetic defects that predispose individuals to a disruption of normal hemostasis. In the first study, a novel autosomal dominant bleeding disorder, which is characterized by excessive bleeding with trauma or surgery and menorrhagia in affected women, was studied in a large family (16 affected individuals) from east Texas. Affected members had a prolongation of their PT and/or aPTT, but normal clinical coagulation studies. Previous linkage analysis by Kuang et. al. (2001) mapped the defective gene to 1g23-24 (LODmax 7.22), which contains the gene for coagulation factor V (FV). I identified an alteration (A2440G) in the FV gene in exon 13 that segregated with the disease and was not present in 62 controls. Interestingly, this alteration resulted in a 22-fold up-regulation of a novel alternative splicing variant in patients' RNA versus controls. This translated into a similar fold increase in a 250-kDa isoform of FV seen in patients' plasma versus controls. A recombinant of this splicing event exhibited an increased sensitivity to cleavage by activated protein C (APC) that was more striking in the presence of PS. In addition, this novel isoform had increased APC cofactor activity, thus increasing the degradation of FVIIIa. These data indicated that A2440G up-regulates an alternatively spliced transcript of FV, and increases a FV isoform that hinders coagulation as opposed to promoting it like its wild-type counterpart. ^ The second study reports the largest screening to date of African Americans in two independent cohorts for a rare prothrombin variant, C20209T, which is suspected to be associated with thrombotic disease. The Texas Medical Center Genetics Resource (TexGen) Stroke DNA repository revealed 1.67% (Fisher p=0.27) of African American stroke patients were heterozygous for the 20209*T allele. Screening of the Atherosclerosis Risk in Communities Study (ARIC) cohort (n=3470) for the 20209*T allele revealed a population prevalence of 0.58% in individuals of African American descent; however, all associations with thrombotic disease were negative. Analysis of these two independent cohorts revealed that, unlike its neighbor G20210A, the C20209T variant does not increase the risk of thrombotic events in the African American population. ^
Resumo:
Factor Xa, the converting enzyme of prothrombin to thrombin, has emerged as an alternative (to thrombin) target for drug discovery for thromboembolic diseases. An inhibitor has been synthesized and the crystal structure of the complex between Des[1–44] factor Xa and the inhibitor has been determined by crystallographic methods in two different crystal forms to 2.3- and 2.4-Å resolution. The racemic mixture of inhibitor FX-2212, (2RS)-(3′-amidino-3-biphenylyl)-5-(4-pyridylamino)pentanoic acid, inhibits factor Xa activity by 50% at 272 nM in vitro. The S-isomer of FX-2212 (FX-2212a) was found to bind to the active site of factor Xa in both crystal forms. The biphenylamidine of FX-2212a occupies the S1-pocket, and the pyridine ring makes hydrophobic interactions with the factor Xa aryl-binding site. Several water molecules meditate inhibitor binding to residues in the active site. In contrast to the earlier crystal structures of factor Xa, such as those of apo-Des[1–45] factor Xa and Des[1–44] factor Xa in complex with a naphthyl inhibitor DX-9065a, two epidermal growth factor-like domains of factor Xa are well ordered in both our crystal forms as well as the region between the two domains, which recently was found to be the binding site of the effector cell protease receptor-1. This structure provides a basis for designing next generation inhibitors of factor Xa.
Resumo:
Anticardiolipin (anti-CL) antibodies, diagnostic for antiphospholipid antibody syndrome, are associated with increased risks of venous and arterial thrombosis. Because CL selectively enhances activated protein C/protein S-dependent anticoagulant activities in purified systems and because CL is not known to be a normal plasma component, we searched for CL in plasma. Plasma lipid extracts [chloroform/methanol (2:1, vol/vol)] were subjected to analyses by using TLC, analytical HPLC, and MS. A plasma lipid component was purified that was indistinguishable from reference CL (M:1448). When CL in 40 fasting plasma lipid extracts (20 males, 20 females) was quantitated by using HPLC, CL (mean ± SD) was 14.9 ± 3.7 μg/ml (range 9.1 to 24.2) and CL was not correlated with phosphatidylserine (3.8 ± 1.7 μg/ml), phosphatidylethanolamine (64 ± 20 μg/ml), or choline-containing phospholipid (1,580 ± 280 μg/ml). Based on studies of fasting blood donors, CL (≥94%) was recovered in very low density, low density, and high density lipoproteins (11 ± 5.3%, 67 ± 11.0%, and 17 ± 10%, respectively), showing that the majority of plasma CL (67%) is in low density lipoprotein. Analysis of relative phospholipid contents of lipoproteins indicated that high density lipoprotein is selectively enriched in CL and phosphatidylethanolamine. These results shows that CL is a normal plasma component and suggest that the epitopes of antiphospholipid antibodies could include CL or oxidized CL in lipoproteins or in complexes with plasma proteins (e.g., β2-glycoprotein I, prothrombin, protein C, or protein S) or with platelet or endothelial surface proteins.
Resumo:
Promoter and silencer elements of the immediate 5' flanking region of the gene coding for human factor VII were identified and characterized. The major transcription start site, designated as +1, was determined by RACE (rapid amplification of cDNA ends) analysis of human liver cDNA and was found to be located 50 bp upstream from the translation start site. Two minor transcription start sites were found at bp +32 bp and +37. Progressive deletions of the 5' flanking region were fused to the chloramphenicol acetyltransferase reporter gene and transient expression in HepG2 and HeLa cells was measured. Two promoter elements that were essential for hepatocyte-specific transcription were identified. The first site, FVIIP1, located at bp -19 to +1, functioned independently of orientation or position and contributed about one-third of the promoter activity of the factor VII gene. Electrophoretic mobility-shift, competition, and anti-hepatocyte nuclear factor 4 (HNF4) antibody supershift experiments demonstrated that this site contained an HNF-4 binding element homologous to the promoters in the genes coding for factor IX and factor X. The second site, FVIIP2, located at bp -50 to -26, also functioned independent of orientation or position and contributed about two thirds of the promoter activity in the gene for factor VII. Functional assays with mutant sequences demonstrated that a 10-bp G + C-rich core sequence which shares 90% sequence identity with the prothrombin gene enhancer was essential for the function of the second site. Mobility-shift and competition assays suggested that this site also binds hepatic-specific factors as well as the transcription factor Sp1. Two silencer elements located upstream of the promoter region spanning bp -130 to -103 (FVIIS1 site) and bp -202 to -130 (FVIIS2) were also identified by reporter gene assays.
Resumo:
Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.
Resumo:
Human hookworm infection is a major cause of gastrointestinal blood loss and iron deficiency anemia, affecting up to one billion people in the developing world. These soil-transmitted helminths cause blood loss during attachment to the intestinal mucosa by lacerating capillaries and ingesting extravasated blood. We have isolated the major anticoagulant used by adult worms to facilitate feeding and exacerbate intestinal blood loss. This 8.7-kDa peptide, named the Ancylostoma caninum anticoagulant peptide (AcAP), was purified by using a combination of ion-exchange chromatography, gel-filtration chromatography, and reverse-phase HPLC. N-terminal sequencing of AcAP reveals no homology to any previously identified anticoagulant or protease inhibitor. Single-stage chromogenic assays reveal that AcAP is a highly potent and specific inhibitor of human coagulation, with an intrinsic K*i for the inhibition of free factor Xa of 323.5 pM. In plasma-based clotting time assays, AcAP was more effective at prolonging the prothrombin time than both recombinant hirudin and tick anticoagulant peptide. These data suggest that AcAP, a specific inhibitor of factor Xa, is one of the most potent naturally occurring anticoagulants described to date.
Resumo:
Orthotopic liver retransplantation (re-OLT) is highly controversial. The objectives of this study were to determine the validity of a recently developed United Network for Organ Sharing (UNOS) multivariate model using an independent cohort of patients undergoing re-OLT outside the United States, to determine whether incorporation of other variables that were incomplete in the UNOS registry would provide additional prognostic information, to develop new models combining data sets from both cohorts, and to evaluate the validity of the model for end-stage liver disease (MELD) in patients undergoing re-OLT. Two hundred eighty-one adult patients undergoing re-OLT (between 1986 and 1999) at 6 foreign transplant centers comprised the validation cohort. We found good agreement between actual survival and predicted survival in the validation cohort; 1-year patient survival rates in the low-, intermediate-, and high-risk groups (as assigned by the original UNOS model) were 72%, 68%, and 36%, respectively (P < .0001). In the patients for whom the international normalized ratio (INR) of prothrombin time was available, MELD correlated with outcome following re-OLT; the median MELD scores for patients surviving at least 90 days compared with those dying within 90 days were 20.75 versus 25.9, respectively (P = .004). Utilizing both patient cohorts (n = 979), a new model, based on recipient age, total serum bilirubin, creatinine, and interval to re-OLT, was constructed (whole model χ(2) = 105, P < .0001). Using the c-statistic with 30-day, 90-day, 1-year, and 3-year mortality as the end points, the area under the receiver operating characteristic (ROC) curves for 4 different models were compared. In conclusion, prospective validation and use of these models as adjuncts to clinical decision making in the management of patients being considered for re-OLT are warranted.