974 resultados para Processing Element Array


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated, with specific reference to the speed and the accuracy offered by BEM. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. A pig liver is the biological organ considered. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polyhedral model provides an expressive intermediate representation that is convenient for the analysis and subsequent transformation of affine loop nests. Several heuristics exist for achieving complex program transformations in this model. However, there is also considerable scope to utilize this model to tackle the problem of automatic memory footprint optimization. In this paper, we present a new automatic storage optimization technique which can be used to achieve both intra-array as well as inter-array storage reuse with a pre-determined schedule for the computation. Our approach works by finding statement-wise storage partitioning hyper planes that partition a unified global array space so that values with overlapping live ranges are not mapped to the same partition. Our heuristic is driven by a fourfold objective function which not only minimizes the dimensionality and storage requirements of arrays required for each high-level statement, but also maximizes inter statement storage reuse. The storage mappings obtained using our heuristic can be asymptotically better than those obtained by any existing technique. We implement our technique and demonstrate its practical impact by evaluating its effectiveness on several benchmarks chosen from the domains of image processing, stencil computations, and high-performance computing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laminar plasma technology was used to produce ceramic hardened layers of Al2O3-40% mass Ni composite powders on stainless steel substrates. In order to investigate the influences of processing conditions on the morphologies of the surface modified layers, two different powder-feeding methods were tested, one with carrier gas called the powder injection method, and the other without carrier gas called powder transfers method. The microscopic investigations demonstrate that the cross-section of the clad layers consists of two distinct microstructural regions, in which the Al2O3 phases exhibit different growth mechanisms. When the powder transfers method is adopted, the number density and volume fraction of the Al2O3 particles increase considerably and their distributions exhibit zonal periodical characteristics. When the powder-feeding rate increases, the microstructure of the Al2O3 phases changes from a small globular to a long needle shape. Finite element simulations show that the transient thermo-physical features of the pool substances, such as solidification rate and cooling rate, influence strongly the mechanisms of the nucleation and the directional growth of the Al2O3 phases in the thermal processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of remelting and cladding processing with laminar plasma jets on several metals has been conducted looking for possible development of a new surface modification technique. The remelting tests illustrated that the new method could evidently improve the material microstructure and properties of cast iron. The cladding was done with Al2O3 ceramic powder on stainless steel. The energy dispersive spectra (EDS) analysis was used to determine the distribution of the major cladding element in the plasma-processed layers, for which the microstructure observations and hardness measurements were also performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional finite element analysis has been used to determine the internal stresses in a three-phase composite. The stresses have been determined for a variety of interphase properties, the thicknesses of the interphase and the volume fractions of particles. Young's modulus has been calculated from a knowledge of these stresses and the applied deformation. The calculations show that stress distributions in the matrix and the mechanical properties are sensitive to the interphase property in the three-phase composites. The interfacial stresses in the three-dimensional analysis are in agreement with results obtained by an axisymmetric analysis. The predicted bulk modulus in three-dimensional analysis agrees well with the theoretical solution obtained by Qui and Weng, but it presents a great divergence from that in axisymmetric analyses. An investigation indicates that this divergence may be caused by the difference in the unit cell structure between two models. A comparison of the numerically predicted bulk and shear modulus for two-phase composites with the theoretical results indicates that the three-dimensional analysis gives quite satisfactory results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Singular Value Decomposition (SVD) is a key linear algebraic operation in many scientific and engineering applications. In particular, many computational intelligence systems rely on machine learning methods involving high dimensionality datasets that have to be fast processed for real-time adaptability. In this paper we describe a practical FPGA (Field Programmable Gate Array) implementation of a SVD processor for accelerating the solution of large LSE problems. The design approach has been comprehensive, from the algorithmic refinement to the numerical analysis to the customization for an efficient hardware realization. The processing scheme rests on an adaptive vector rotation evaluator for error regularization that enhances convergence speed with no penalty on the solution accuracy. The proposed architecture, which follows a data transfer scheme, is scalable and based on the interconnection of simple rotations units, which allows for a trade-off between occupied area and processing acceleration in the final implementation. This permits the SVD processor to be implemented both on low-cost and highend FPGAs, according to the final application requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microtubules (MT) are composed of 13 protofilaments, each of which is a series of two-state tubulin dimers. In the MT wall, these dimers can be pictured as "lattice" sites similar to crystal lattices. Based on the pseudo-spin model, two different location states of the mobile electron in each dimer are proposed. Accordingly, the MT wall is described as an anisotropic two-dimensional (2D) pseudo-spin system considering a periodic triangular "lattice". Because three different "spin-spin" interactions in each cell exist periodically in the whole MT wall, the system may be shown to be an array of three types of two-pseudo-spin-state dimers. For the above-mentioned condition, the processing of quantum information is presented by using the scheme developed by Lloyd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate a planar ion chip design with a two-dimensional array of linear ion traps for the scalable quantum information processor. The segmented electrodes reside in a single plane on a substrate and a grounded metal plate, a combination of appropriate rf and DC potentials are applied to them for stable ion confinement, and the trap axes are located above the surface at a distance controlled by the electrodes' lateral extent and the substrate's height as discussed. The potential distributions are calculated using static electric field qualitatively. This architecture is conceptually simple and many current microfabrication techniques are feasible for the basic structure. It may provide a promising route for scalable quantum computers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.

Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.

However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.

Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A more powerful tool for binary image processing, i.e., logic-operated mathematical morphology (LOMM), is proposed. With LOMM the image and the structuring element (SE) are treated as binary logical variables, and the MULTIPLY between the image and the SE in correlation is replaced with 16 logical operations. A total of 12 LOMM operations are obtained. The optical implementation of LOMM is described. The application of LOMM and its experimental results are also presented. (C) 1999 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ordered gray-scale erosion is suggested according to the definition of hit-miss transform. Instead of using three operations, two images, and two structuring elements, the developed operation requires only one operation and one structuring element, but with three gray-scale levels. Therefore, a union of the ordered gray-scale erosions with different structuring elements can constitute a simple image algebra to program any combined image processing function. An optical parallel ordered gray-scale erosion processor is developed based on the incoherent correlation in a single channel. Experimental results are also given for an edge detection and a pattern recognition. (C) 1998 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(98)00306-7].