125 resultados para Potentiodynamic
Resumo:
Na primeira parte do trabalho, foram investigados materiais ativos para eletro-oxidar etanol e acetaldeído seletivos para a rota C2 (Carbono 2) e, também, ativos para eletro-oxidar hidrogênio molecular, visando a aplicação em células a combustível de hidrogênio indireto. Neste tipo de célula, um processador de combustível externo desidrogena o etanol e os produtos desta reação, contendo H2, acetaldeído e, possivelmente, etanol residual, são direcionados para alimentar o ânodo. Neste sentido, o eletrocatalisador anódico pode ser ativo para a eletro-oxidação de etanol residual, bem como acetaldeído, mas este deve catalisar a reação via C2 com o objetivo de evitar a formação de espécies que envenenam a superfície catalítica (CO ou CHx), ou seja, a ligação C-C deve permanecer intacta. Os eletrocatalisadores bimetálicos foram formados por M/Pt/C (onde M = W, Ru ou Sn) e os produtos reacionais foram analisados por DEMS On-line. Os resultados mostraram que Ru/Pt/C e Sn/Pt/C apresentaram maiores taxas de reação global, no entanto, eles não foram seletivos. Por outro lado, W2/Pt3/C foi mais seletivo para a rota C2, dada a não formação de CH4 e CO2. Além disso, este material também foi ativo e estável para a eletro-oxidação de H2, mesmo na presença de acetaldeído, o que o torna um potencial catalisador para aplicação no ânodo de células a combustível de hidrogênio indireto. Na segunda parte do trabalho, o objetivo foi relacionado com o estudo de eletrocatalisadores seletivos para a rota C1 (Carbono 1). A oxidação eletroquímica do etanol e de seus produtos reacionais foram investigados por DEMS on-line em temperatura ambiente e intermediária (245oC). Para temperatura ambiente, utilizou-se solução aquosa de ácido sulfúrico (H2SO4) e, para temperatura intermediária, utilizou-se ácido sólido (CsH2PO4) como eletrólito. Os eletrocatalisadores investigados foram formados por SnOxRuOx-Pt/C e Pt/C. Em temperatura ambiente, os resultados de polarização potenciodinâmica mostraram uma maior atividade eletrocatalítica para o material SnOxRuOx-Pt/C, com eficiência de corrente para formação de CO2 de 15,6% contra 15,2% para Pt/C, sob condições estagnantes, sem controle por transporte de massa. O stripping de resíduos reacionais, após a eletro-oxidação de etanol bulk, sob condições de fluxo, mostraram o acúmulo de espécies com 1 átomo de carbono (CO e CHx) que causam o bloqueio dos sítios ativos e são oxidadas eletroquimicamente somente em mais altos potenciais (ca. 1,0 V). Por outro lado, as curvas de polarização a 245oC mostraram maiores valores de eficiências de correntes para formação de CO2 (45% para Pt/C em ambos potenciais 0,5 V e 0,8 V contra 36% e 50% para SnOxRuOx-Pt/C em 0,5 V e 0,8 V respectivamente) quando comparado com os valores obtidos em temperatura ambiente, mas com atividades similares para SnOxRuOx-Pt/C e Pt/C. Para ambos os eletrocatalisadores, os estudos de espectrometria de massas a 245oC evidenciaram que as rotas eletroquímicas ocorrem em paralelo com rotas puramente químicas, envolvendo catálise heterogênea, de decomposição do etanol, produzindo H2 e CO2 como produtos majoritários.
Resumo:
As chapas de ligas de alumínio trabalháveis são produzidas atualmente por dois processos, o método de vazamento contínuo conhecido TRC (Twin Roll Continous Casting) ou pelo método tradicional de vazamento de placas DC (Direct Chill). A fabricação de ligas de alumínio pelos dois processos confere características microestruturais diferentes quando comparadas entre si, o que se reflete em suas propriedades. Além disto, ocorrem variações microestruturais ao longo da espessura, especialmente nas chapas produzidas pelo processo TRC. Neste sentido, é importante estudar a evolução microestrutural que ocorre durante o seu processamento e sua influência com relação à resistência à corrosão. Dessa forma foi realizado neste trabalho um estudo comparativo do comportamento de corrosão, bem como das microestruturas do alumínio de alta pureza AA1199 (99,995% Al) e das ligas de alumínio AA1050 (Fe+Si0,5%) e AA4006 (Fe+Si1,8%) produzidas pelos processos industriais de lingotamento contínuo e semi-contínuo. Os resultados obtidos evidenciaram que as microestruturas das ligas AA4006 DC e AA4006 TRC são distintas, sendo observada maior fração volumétrica dos precipitados na liga fabricada pelo processo TRC comparativamente ao DC. Para caracterizar o comportamento de corrosão foram realizados ensaios de Espectroscopia de Impedância Eletroquímica e Polarização Potenciodinâmica, que mostraram a maior resistência à corrosão localizada para a liga fabricada pelo processo TRC em comparação ao processo DC. Além disso, foi verificada, em ordem decrescente, uma maior resistência à corrosão do alumínio AA1050, seguida pela superfície da liga AA4006 e por fim, pelo centro da chapa desta última. Os resultados obtidos por espectroscopia de impedância eletroquímica para as ligas AA4006 fabricadas pelo processo TRC apresentaram melhor desempenho que o processo DC, principalmente em intervalos de 2 a 12 horas de imersão na solução de sulfato de sódio contaminada com íons cloreto. Para tempos de imersão acima de 4 horas foi observado comportamento indutivo em baixas frequências para os dois tipos de processamento investigados, o que foi associado à adsorção de espécies químicas, principalmente íons sulfato e oxigênio, na interface metal/óxido. As curvas de polarização anódica mostraram maior resistência à corrosão localizada para a liga fabricada pelo processo viii TRC em comparação ao processo DC. Este comportamento foi associado às diferentes características microestruturais, observadas para liga AA4006 obtida pelos dois processos.
Resumo:
Ligas de níquel têm atualmente uma vasta gama de aplicações, sendo a agressividade do meio e as elevadas temperaturas que estas ligas suportam, um diferencial excepcional. A liga UNS N07090, objeto deste trabalho, encontra aplicações muito diversas, entre elas turbocompressores, sistemas de exaustão e de pós-tratamento de motores a diesel. Nestas aplicações a liga está exposta a gases, que ao condensarem formam ácido sulfúrico (H2SO4). Torna-se, assim, importante, o conhecimento da resistência à corrosão da liga nesse meio. O presente trabalho tem como objetivo caracterizar o comportamento eletroquímico da liga através de curvas de polarização potenciodinâmica em diferentes concentrações de ácido sulfúrico. Observou-se que quanto maior a concentração de ácido, maior é a corrosão da liga. Este fato pode ser discutido pela adsorção do íon sulfato (SO42-), que prejudica tanto a formação quanto a cinética de crescimento da película passiva do níquel. Em contrapartida, a presença de Cr na liga UNS N07090 apresentou um benefício sobre a resistência à corrosão desta muito acima do esperado, influenciando de forma direta as curvas de polarização da liga e mantendo-a em condição de elevada resistência à corrosão em detrimento do pior desempenho observado em outros elementos pertecentes à liga, como Co, Al e Ti. Tempos de imersão de 24h em ácido sulfúrico elevam discretamente os parâmetros de corrosão da liga, mantendo-os, no entanto em patamares bastante baixos, permitindo finalmente concluir que a liga UNS N07090, quando exposta a concentrações que variam de 1M a 4M H2SO4, a 25°C, apresenta boa resistência à corrosão e que esta não se altera com o tempo de exposição. A análise dos resultados mostrou que o processo corrosivo é controlado por reações catódicas de sulfato e hidrogênio, as quais podem ter diferentes contribuições dependendo da concentração do ácido e do tempo de imersão da liga UNS N07090 no meio corrosivo.
Resumo:
O desenvolvimento dos aços inoxidáveis Super-Martensíticos (SM) nasce da necessidade de implementar novas tecnologias, mais econômicas e amigáveis ao meio ambiente. Os aços inoxidáveis SM são uma derivação dos aços inoxidáveis martensíticos convencionais, diferenciando-se basicamente no menor teor de carbono, na adição de Ni e Mo. Foram desenvolvidos como uma alternativa para aços inoxidáveis duplex no uso de dutos para a extração de petróleo offshore em meados dos anos 90. Para que esses aços apresentem as propriedades mecânicas de resistência à tração e tenacidade é necessário que sejam realizados tratamentos de austenitização, seguido de têmpera, e de revenimento, onde, particularmente para este último, há várias opções de tempos e temperaturas. Como os tratamentos térmicos geram as propriedades mecânicas através de transformações de fase (precipitação) podem ocorrer alterações da resistência à corrosão. São conhecidos os efeitos benéficos da adição de Nb em aços inoxidáveis tradicionais. Por isso, o objetivo desta pesquisa foi estudar aços inoxidáveis SM contendo Nb. Foi pesquisada a influência da temperatura de revenimento sobre a resistência à corrosão de três aços inoxidáveis SM, os quais contêm 13% Cr, 5% Ni, 1% a 2% Mo, com e sem adições de Nb. No presente trabalho, foram denominados de SM2MoNb, SM2Mo e SM1MoNb, que representam aços com 2% Mo, 1% Mo e 0,11% Nb. Dado que os principais tipos de corrosão para aços inoxidáveis são a corrosão por pite (por cloreto) e a corrosão intergranular (sensitização), optou-se por determinar os Potenciais de Pite (Ep) e os Graus de Sensitização (GS) em função da temperatura de revenimento. Os aços passaram por recozimento a 1050°C por 48 horas, para eliminação de fase ferrita delta. Em seguida foram tratados a 1050 °C por 30 minutos, com resfriamento ao ar, para uniformização do tamanho de grão. A estrutura martensítica obtida recebeu tratamentos de revenimento em temperaturas de: 550 °C, 575 °C, 600 °C, 625 °C, 650 °C e 700 °C, por 2 horas. O GS foi medido através da técnica de reativação eletroquímica potenciodinâmica na versão ciclo duplo (DL-EPR), utilizando-se eletrólito de 1M H2SO4 + 0,01M KSCN. Para determinar o Ep foram realizados ensaios de polarização potenciodinâmica em 0,6M NaCl. Os resultados obtidos foram discutidos através das variações microestruturais encontradas. Foram empregadas técnicas de microscopia ótica (MO), microscopia eletrônica de varredura (MEV), simulação termodinâmica de fases através do programa Thermo-Calc e determinação de austenita revertida mediante difração de raios X (DRX) e ferritoscópio. A quantificação da austenita por DRX identificou que a partir de 600 °C há formação desta fase, apresentando máximo em 650 °C, e novamente diminuindo para zero a 700 °C. Por sua vez, o método do ferritoscópio detectou austenita nas condições em que a analise de DRX indicou valor nulo, sendo as mais críticas a do material temperado (sem revenimento) e do aço revenido a 700 °C. Propõe-se que tais diferenças entre os dois métodos se deve à morfologia fina da austenia retida, a qual deve estar localizada entre as agulhas de martensita. Os resultados foram discutidos em termos da precipitação de Cr23C6, Mo6C, NbC, fase Chi, austenita e ferrita, bem como das consequências do empobrecimento em Cr e Mo, gerados por tais microconstituintes. São propostos três mecanismos para explicar a sensitização: o primeiro é devido a precipitação de Cr23C6, o segundo a precipitação de fase Chi (rica em Cr e Mo) e o terceiro é devido a formação de ferrita durante o revenimento. O melhor desempenho quanto ao GS foi obtido para os revenimentos a 575 °C e 600°C, por 2 horas. Os resultados de Ep indicaram que o aço SM2MoNb, revenido a 575°C, tem o melhor desempenho quanto à resistência à corrosão por cloreto. Isso associado ao baixo GS coloca este aço, com este tratamento térmico, numa posição de destaque para aplicações onde a resistência à corrosão é um critério de seleção de material, uma vez que, segundo a literatura a temperatura de 575 °C está no intervalo de temperaturas de revenimento onde são obtidas as melhores propriedades mecânicas.
Resumo:
Functionalized carbon nanotubes (CNTs) using three aminobenzene acids with different functional groups (carboxylic, sulphonic, phosphonic) in para position have been synthesized through potentiodynamic treatment in acid media under oxidative conditions. A noticeable increase in the capacitance for the functionalized carbon nanotubes mainly due to redox processes points out the formation of an electroactive polymer thin film on the CNTs surface along with covalently bonded functionalities. The CNTs functionalized using aminobenzoic acid rendered the highest capacitance values and surface nitrogen content, while the presence of sulfur and/or phosphorus groups in the aminobenzene structure yielded a lower functionalization degree. The oxygen reduction reaction (ORR) activity of the functionalized samples was similar to that of the parent CNTs, independently of the functional group present in the aminobenzene acid. Interestingly, a heat treatment in N2 atmosphere with a very low O2 concentration (3125 ppm) at 800 °C of the CNTs functionalized with aminobenzoic acid produced a material with high amounts of surface oxygen and nitrogen groups (12 and 4% at., respectively), that seem to modulate the electron-donor properties of the resulting material. The onset potential and limiting current for ORR was enhanced for this material. These are promising results that validates the use of electrochemistry for the synthesis of novel N-doped electrocatalysts for ORR in combination with adequate heat treatments.
Resumo:
A novel and selective electrochemical functionalization of a highly reactive superporous zeolite templated carbon (ZTC) with two different aminobenzene acids (2-aminobenzoic and 4-aminobenzoic acid) was achieved. The functionalization was done through potentiodynamic treatment in acid media under oxidative conditions, which were optimized to preserve the unique ZTC structure. Interestingly, it was possible to avoid the electrochemical oxidation of the highly reactive ZTC structure by controlling the potential limit of the potentiodynamic experiment in presence of aminobenzene acids. The electrochemical characterization demonstrated the formation of polymer chains along with covalently bonded functionalities to the ZTC surface. The functionalized ZTCs showed several redox processes, producing a capacitance increase in both basic and acid media. The rate performance showed that the capacitance increase is retained at scan rates as high as 100 mV s−1, indicating that there is a fast charge transfer between the polymer chains formed inside the ZTC porosity or the new surface functionalities and the ZTC itself. The success of the proposed approach was also confirmed by using other characterization techniques, which confirmed the presence of different nitrogen groups in the ZTC surface. This promising method could be used to achieve highly selective functionalization of highly porous carbon materials.
Resumo:
A novel apparatus, high-pressure/high-temperature nickel flow loop, was constructed to study the effect of the flow on the rate of erosion-corrosion of mild steel in hot caustic. It has been successfully used to measure the corrosion rate of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep, the polarization resistance method, and electrochemical impedance spectroscopy (EIS). Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. The corrosion rate of the coupons in the high velocity section was generally higher than that of the coupons in the low velocity section. One coupon in the disturbed flow region had a significantly higher corrosion rate than the others. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Corrosion rates of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s were studied. The focus was on the effect of the acid cleaning which was performed by using strong, inhibited sulphuric acid in between the exposures to caustic. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep and the polarization resistance method. Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section of a high temperature flow. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. During the exposure of mild steel to the inhibited acid, following the first caustic period, the corrosion rate increased significantly to between 3 and 10mm/y with a few electrodes experiencing as high as 50 mm/y. The second caustic period following the acidic period typically started with very high corrosion rates (20-80 mm/y). The length of this corrosion period was typically 2-3 h with a few exceptions when the high corrosion period lasted 7-10 h. Following the very high corrosion rates experienced at the beginning of the second caustic period, the corrosion rates were reduced sharply (as the corrosion potential increased) to nearly the same levels as those observed during the passive part of the first caustic period. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.
Resumo:
The nature and kinetics of electrode reactions and processes occurring for four lightweight anode systems which have been utilised in reinforced concrete cathodic protection systems have been studied. The anodes investigated were flame sprayed zinc, conductive paint and two activated titanium meshes. The electrochemical properties of each material were investigated in rapidly stirred de-oxygenated electrolytes using anodic potentiodynamic polarisation. Conductive coating electrodes were formed on glass microscope slides, whilst mesh strands were immersed directly. Oxygen evolution occurred preferentially for both mesh anodes in saturated Ca (OH)2/CaC12 solutions but was severely inhibited in less alkaline solutions and significant current only passed in chloride solutions. The main reactions for conductive paint was based on oxygen evolution in all electrolytes, although chlorides increased the electrical activity. Self-corrosion of zinc was controlled by electrolyte composition and the experimental set-up, chlorides increasing the electrical activity. Impressed current cathodic protection was applied to 25 externally exposed concrete slabs over a period of 18 months to investigate anode degradation mechanisms at normal and high current densities. Specimen chloride content, curing and reinforcement depth were also variables. Several destructive and non-destructive methods for assessing the performance of anodes were evaluated including a site instrument for quantitative "instant-off- potential measurements. The impact of cathodic protection on the concrete substrate was determined for a number of specimens using appropriate methods. Anodic degradation rates were primarily influenced by current density, followed by cemendtious alkalinity, chloride levels and by current distribution. Degradation of cementitious overlays and conductive paint substrates proceeded by sequential neutralisation of cement phases, with some evidence of paint binder oxidation. Sprayed zinc progressively formed an insulating layer of hydroxide complexes, which underwent pitting_ attack in the presence of sufficient chlorides, whilst substrate degradation was minimal. Adhesion of all anode systems decreased with increasing current density. The influence of anode material on the ionic gradients which can develop during cathodic protection was investigated. A constant current was passed through saturated cement paste prisms containing calcium chloride to central cathodes via anodes applied or embedded at each end. Pore solution was obtained from successive cut paste slices for anion and cation analyses. Various experimental errors reduced the value of the results. Characteristic S-shaped profiles were not observed and chloride ion profiles were ambiguous. Mesh anode specimens were significantly more durable than the conductive coatings in the high humidity environment. Limited results suggested zinc ion migration to the cathode region. Electrical data from each investigation clearly indicated a decreasing order of anode efficiency by specific anode material.
Resumo:
The deposition efficiencies of a number of electroless nickel and cobalt plating solutions were studied and in the case of nickel compared with a commercial plating solution Nifoss 80. At the optimum plating conditions (92ºC and pH 4.5) Nifoss 80 produced nickel layers most efficiently, the alkaline cobalt solution operated most efficiently at 90ºC and pH 9. The methods of producing compostte layers containing 2-3 µm carbide particles and chromium powder is described. Nickel and cobalt layers containing approximately 27% carbide particles, or 40% (Ni) and 30% (Co) chromium particles by volume were obtained. This value is independent of the particle concentration in the plating solution within the range (20~200 g/l). Hardness of the nickel. as deposited was 515 Hv, this was increased to a maximum of 1155 Hv by heat treatment at 200ºC for 5 hours in vacuum. Incorporation. of .chromium carbide particles resulted in a maximum hardness of 1225 Hv after heating at 500ºC for 5 hours in vacuum and chromium particles resulted in a maximum hardness of 16S0 Hv after heat treatment at 400ºC for 2 hours in vacuum. Similarly the hardness of cobalt as deposited was 600 Hv, this was increased to a maximum of 1300 Hv after heat treatment at 400ºC for 1 hour. Incorporation of chromium carbide particles resulted jn a maximum hardness of 1405 Hv after heating at 400ºC for 5 hours in vacuum and chromium particles resulted in a maximum hardness of 1440 Hv after. heat treating for 2 hours at 400ºC in vacuum. The structure of the deposits was studied by optical and scanning electron microscopy. The wear rate and coefficient of friction was determined by a pin and disc method. Wear rate and coefficient of friction decreased with increase in hardness. The wear resistance of the materials was also determined using a simulated forging test. Dies made of standard die steel were coated and the wear rates of the layers as deposited and after heat treatment were compared with those of uncoated tools. The wear resistance generally increased with hardness, it was 50-75% more than the uncoated die steel. Acetic acid salt spray test and outdoor exposure for six months was used to study the corrosion behaviour of the deposits and potentiodynamic curves plotted to find their corrosion potential. Nickel deposit exhibited less staining than carbide composite deposits and nickel-chromium deposits had the most noble corrosion potential.
Resumo:
Baths containing sulphuric acid as catalyst and others with selected secondary catalysts (methane sulphonic acid - MSA, SeO2, a KBrO3/KIO3 mixture, indium, uranium and commercial high speed catalysts (HEEF-25 and HEEF-405)) were studied. The secondary catalysts influenced CCE, brightness and cracking. Chromium deposition mechanisms were studied in Part II using potentiostatic and potentiodynamic electroanalytical techniques under stationary and hydrodynamic conditions. Sulphuric acid as a primary catalyst and MSA, HEEF-25, HEEF-405 and sulphosalycilic acid as co-catalysts were explored for different rotation, speeds and scan rates. Maximum current was resolved into diffusion and kinetically limited components, and a contribution towards understanding the electrochemical mechanism is proposed. Reaction kinetics were further studied for H2SO4, MSA and methane disulphonic acid catalysed systems and their influence on reaction mechanisms elaborated. Charge transfer coefficient and electrochemical reaction rate orders for the first stage of the electrodeposition process were determined. A contribution was made toward understanding of H2SO4 and MSA influence on the evolution rate of hydrogen. Anodic dissolution of chromium in the chromic acid solution was studied with a number of techniques. An electrochemical dissolution mechanism is proposed, based on the results of rotating gold ring disc experiments and scanning electron microscopy. Finally, significant increases in chromium electrodeposition rates under non-stationary conditions (PRC mode) were studied and a deposition mechanisms is elaborated based on experimental data and theoretical considerations.
Resumo:
Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.^
Resumo:
Owing to an increased risk of aging population and a higher incidence of coronary artery disease (CAD), there is a need for more reliable and safer treatments. Numerous varieties of durable polymer-coated drug eluting stents (DES) are available in the market in order to mitigate in-stent restenosis. However, there are certain issues regarding their usage such as delayed arterial healing, thrombosis, inflammation, toxic corrosion by-products, mechanical stability and degradation. As a result, significant amount of research has to be devoted to the improvement of biodegradable polymer-coated implant materials in an effort to enhance their bioactive response. ^ In this investigation, magneto-electropolished (MEP) and a novel biodegradable polymer coated ternary Nitinol alloys, NiTiTa and NiTiCr were prepared to study their bio and hemocompatibility properties. The initial interaction of a biomaterial with its surroundings is dependent on its surface characteristics such as, composition, corrosion resistance, work of adhesion and morphology. In-vitro corrosion tests such as potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were conducted to determine the coating stability and longevity. In-vitro hemocompatibility studies and HUVEC cell growth was performed to determine their thrombogenic and biocompatibility properties. Critical delamination load of the polymer coated Nitinol alloys was determined using Nano-scratch analysis. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions leached from Nitinol alloys on the viability of HUVEC cells. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), contact angle meter and X-ray diffraction (XRD) were used to characterize the surface of the alloys. ^ MEP treated and polymer coated (PC) Nitinol alloys displayed a corrosion resistant polymer coating as compared to uncoated alloys. MEP and PC has resulted in reduced Ni and Cr ion leaching from NiTi5Cr and subsequently low cytotoxicity. Thrombogenicity tests revealed significantly less platelet adhesion and confluent endothelial cell growth on polymer coated and uncoated ternary MEP Nitinol alloys. Finally, this research addresses the bio and hemocompatibility of MEP + PC ternary Nitinol alloys that could be used to manufacture blood contacting devices such as stents and vascular implants which can lead to lower U.S. healthcare spending.^
Resumo:
It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.