787 resultados para Polymer-surfactant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado integrado em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carnitine (CRT) is a biological metabolite found in urine that contributes in assessingseveral disease conditions, including cancer. Novel quick screening procedures for CRT are therefore fundamental. This work proposes a novel potentiometric device where molecularly imprinted polymers (MIPs) were used as ionophores. The host-tailored sites were imprinted on a polymeric network assembled by radical polymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM). Non-imprinted polymers (NIPs) were produced as control by removing the template from the reaction media. The selective membrane was prepared by dispersing MIP or NIP particles in plasticizer and poly(vinyl chloride), PVC, and casting this mixture over a solid contact support made of graphite. The composition of the selective membrane was investigated with regard to kind/amount of sensory material (MIP or NIP), and the need for a lipophilic additive. Overall, MIP sensors with additive exhibited the best performance, with near-Nernstian response down to ~ 1 × 10− 4 mol L− 1, at pH 5, and a detection limitof ~ 8 × 10− 5 mol L− 1. Suitable selectivity was found for all membranes, assessed by the matched potential method against some of the most common species in urine (urea, sodium, creatinine, sulfate, fructose and hemoglobin). CRT selective membranes including MIP materials were applied successfully to the potentiometric determination of CRT in urine samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-cost disposable was developed for rapid detection of the protein biomarker myoglobin (Myo) as a model analyte. A screen printed electrode was modified with a molecularly imprinted material grafted on a graphite support and incorporated in a matrix composed of poly(vinyl chloride) and the plasticizer o-nitrophenyloctyl ether. The protein-imprinted material (PIM) was produced by growing a reticulated polymer around a protein template. This is followed by radical polymerization of 4-styrenesulfonic acid, 2-aminoethyl methacrylate hydrochloride, and ethylene glycol dimethacrylate. The polymeric layer was then covalently bound to the graphitic support, and Myo was added during the imprinting stage to act as a template. Non-imprinted control materials (CM) were also prepared by omitting the Myo template. Morphological and structural analysis of PIM and CM by FTIR, Raman, and SEM/EDC microscopies confirmed the modification of the graphite support. The analytical performance of the SPE was assessed by square wave voltammetry. The average limit of detection is 0.79 μg of Myo per mL, and the slope is −0.193 ± 0.006 μA per decade. The SPE-CM cannot detect such low levels of Myo but gives a linear response at above 7.2 μg · mL−1, with a slope of −0.719 ± 0.02 μA per decade. Interference studies with hemoglobin, bovine serum albumin, creatinine, and sodium chloride demonstrated good selectivity for Myo. The method was successfully applied to the determination of Myo urine and is conceived to be a promising tool for screening Myo in point-of-care patients with ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. A Biomimetic Sensor Potentiometric System was developed for assessment of doxycycline (DOX) antibiotic. The molecularly imprinted polymer (MIP) was synthesized by using doxycycline as a template molecule, methacrylic acid (MAA) and/or acrylamide (AA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensing elements were fabricated by the inclusion of DOX imprinted polymers in polyvinyl chloride (PVC) matrix. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near-Nernstian response. MIP/MAA membrane sensor was incorporated in flow-through cells and used as detectors for flow injection analysis (FIA) of DOX. The method has the requisite accuracy, sensitivity and precision to assay DOX in tablets and biological fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Inclusion of antioxidants in topical formulations can contribute to minimize oxidative stress in the skin, which has been associated with photoaging, several dermatosis and cancer. Objective: A Castanea sativa leaf extract with established antioxidant activity was incorporated into a semisolid surfactant-free formulation. The objective of this study was to perform a comprehensive characterization of this formulation. Materials and methods: Physical, microbiological and functional stability were evaluated during 6 months storage at 20 °C and 40 °C. Microstructure elucidation (cryo-SEM), in vitro release and in vivo moisturizing effect (Corneometer® CM 825) were also assessed. Results and discussion: Minor changes were observed in the textural and rheological properties of the formulation when stored at 20 °C for 6 months and the antioxidant activity of the plant extract remained constant throughout the storage period. Microbiological quality was confirmed at the end of the study. Under accelerated conditions, higher modifications of the evaluated parameters were observed. Cryo-SEM analysis revealed the presence of oil droplets dispersed into a gelified external phase. The release rate of the antioxidant compounds (610 ± 70 µgh−0.5) followed Higuchi model. A significant in vivo moisturizing effect was demonstrated, that lasted at least 4 h after product’s application. Conclusion: The physical, functional and microbiological stability of the antioxidant formulation was established. Specific storage conditions should be recommended considering the influence of temperature on the stability. A skin hydration effect and good skin tolerance were also found which suggests that this preparation can be useful in the prevention or treatment of oxidative stress-mediated dysfunctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfacen® is an exogenous natural lung surfactant, composed by phospholipids and hydrophobic proteins, which is applied successfully in Newborn Respiratory Distress Syndrome. In this paper, in vitro activity of Surfacen® against Leishmania amazonensis is described. The product showed activity against the amastigote form found in peritoneal macrophages from BALB/c mice, with an IC50 value of 17.9 ± 3.0 µg/mL; while no toxic effect on host cell was observed up to 200 µg/mL. This is the first report about the antileishmanial activity of Surfacen®.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thesis submitted for the Degree of Master in Medical microbiology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials engineering focuses on the assembly of materials´ properties to design new products with the best performance. By using sub-micrometer size materials in the production of composites, it is possible to obtain objects with properties that none of their compounds show individually. Once three-dimensional materials can be easily customized to obtain desired properties, much interest has been paid to nanostructured poly-mers in order to build biocompatible devices. Over the past years, the thermosensitive microgels have become more common in the framework of bio-materials with potential applicability in therapy and/or diagnostics. In addition, high aspect ratio biopolymers fibers have been produced using the cost-effective method called electrospinning. Taking advantage of both microgels and electrospun fibers, surfaces with enhanced functionalities can be obtained and, therefore employed in a wide range of applications. This dissertation reports on the confinement of stimuli-responsive microgels through the colloidal electro-spinning process. The process mainly depends on the composition, properties and patterning of the precur-sor materials within the polymer jet. Microgels as well as the electrospun non-woven mats were investigated to correlate the starting materials with the final morphology of the composite fibers. PNIPAAm and PNIPAAm/Chitosan thermosensitive microgels with different compositions were obtained via surfactant free emulsion polymerization (SFEP) and characterized in terms of chemical structure, morphology, thermal sta-bility, swelling properties and thermosensitivity. Finally, the colloidal electrospinning method was carried out from spinning solutions composed of the stable microgel dispersions (up to a concentration of about 35 wt. % microgels) and a polymer solution of PEO/water/ethanol mixture acting as fiber template solution. The confinement of microgels was confirmed by Scanning Electron Microscopy (SEM). The electrospinning process was statistically analysed providing the optimum set of parameters aimed to minimize the fiber diameter, which give rise to electrospun nanofibers of PNIPAAm microgels/PEO with a mean fiber diameter of 63 ± 25 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Characterization of the structural changes occurring in the pulmonary arteries resulting from surgically produced congenital diaphragmatic hernia in rabbits, with particular emphasis on the preventive effects of prenatal tracheal ligation or administration of intra-amniotic dexamethasone or surfactant. METHODS: Twenty rabbit fetuses underwent surgical creation of a left-sided congenital diaphragmatic hernia on the 24th or 25th gestational day. They were divided according to the following procedures: congenital diaphragmatic hernia (n = 5), congenital diaphragmatic hernia plus tracheal ligation (n = 5), congenital diaphragmatic hernia plus intra-amniotic administration of dexamethasone 0.4 mg (n = 5) or surfactant (Curosurf 40 mg, n = 5). On gestational day 30, all the fetuses were delivered by caesarean section and killed. A control group consisted of five nonoperated fetuses. Histomorphometric analysis of medial thickness, cell nuclei density, and elastic fiber density of pulmonary arterial walls was performed. RESULTS: Arteries with an external diameter > 100 mum have a decreased medial thickness, lower cell nuclei density, and greater elastic fiber density when compared with arteries with external diameter <= 100 mum. Congenital diaphragmatic hernia promoted a significant decrease in medial thickness and an increase in cell nuclei density in artery walls with external diameter > 100 mum. Prenatal treatments with tracheal ligation or intra-amniotic administration of dexamethasone or surfactant prevented these changes. In arteries with external diameter <= 100 mum, congenital diaphragmatic hernia promoted a significant increase in medial thickness and in cell nuclei density and a decrease in elastic fiber density. The prenatal treatments with tracheal ligation or intra-amniotic administration of dexamethasone or surfactant prevented these changes, although no effect was observed in elastic fiber density in the congenital diaphragmatic hernia plus dexamethasone group. CONCLUSIONS: Congenital diaphragmatic hernia promoted different structural changes for large or small arteries. The prenatal intra-amniotic administration of dexamethasone or surfactant had positive effects on the lung structural changes promoted by congenital diaphragmatic hernia, and these effects were comparable to the changes induced by tracheal ligation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the effects of 2 different doses of exogenous surfactant on pulmonary mechanics and on the regularity of pulmonary parenchyma inflation in newborn rabbits. METHOD: Newborn rabbits were submitted to tracheostomy and randomized into 4 study groups: the Control group did not receive any material inside the trachea; the MEC group was instilled with meconium, without surfactant treatment; the S100 and S200 groups were instilled with meconium and were treated with 100 and 200 mg/kg of exogenous surfactant (produced by Instituto Butantan) respectively. Animals from the 4 groups were mechanically ventilated during a 25-minute period. Dynamic compliance, ventilatory pressure, tidal volume, and maximum lung volume (P-V curve) were evaluated. Histological analysis was conducted using the mean linear intercept (Lm), and the lung tissue distortion index (SDI) was derived from the standard deviation of the means of the Lm. One-way analysis of variance was used with a = 0.05. RESULTS: After 25 minutes of ventilation, dynamic compliance (mL/cm H2O · kg) was 0.87 ± 0.07 (Control); 0.49 ± 0.04 (MEC*); 0.67 ± 0.06 (S100); and 0.67 ± 0.08 (S200), and ventilatory pressure (cm H2O) was 9.0 ± 0.9 (Control); 16.5 ± 1.7 (MEC*); 12.4 ± 1.1 (S100); and 12.1 ± 1.5 (S200). Both treated groups had lower Lm values and more homogeneity in the lung parenchyma compared to the MEC group: SDI = 7.5 ± 1.9 (Control); 11.3 ± 2.5 (MEC*), 5.8 ± 1.9 (S100); and 6.7 ± 1.7 (S200) (*P < 0.05 versus all the other groups). CONCLUSIONS: Animals treated with surfactant showed significant improvement in pulmonary mechanics and more regularity of the lung parenchyma in comparison to untreated animals. There was no difference in results after treatment with either of the doses used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.