998 resultados para Polyaniline and its Composites
Resumo:
This thesis applies Monte Carlo techniques to the study of X-ray absorptiometric methods of bone mineral measurement. These studies seek to obtain information that can be used in efforts to improve the accuracy of the bone mineral measurements. A Monte Carlo computer code for X-ray photon transport at diagnostic energies has been developed from first principles. This development was undertaken as there was no readily available code which included electron binding energy corrections for incoherent scattering and one of the objectives of the project was to study the effects of inclusion of these corrections in Monte Carlo models. The code includes the main Monte Carlo program plus utilities for dealing with input data. A number of geometrical subroutines which can be used to construct complex geometries have also been written. The accuracy of the Monte Carlo code has been evaluated against the predictions of theory and the results of experiments. The results show a high correlation with theoretical predictions. In comparisons of model results with those of direct experimental measurements, agreement to within the model and experimental variances is obtained. The code is an accurate and valid modelling tool. A study of the significance of inclusion of electron binding energy corrections for incoherent scatter in the Monte Carlo code has been made. The results show this significance to be very dependent upon the type of application. The most significant effect is a reduction of low angle scatter flux for high atomic number scatterers. To effectively apply the Monte Carlo code to the study of bone mineral density measurement by photon absorptiometry the results must be considered in the context of a theoretical framework for the extraction of energy dependent information from planar X-ray beams. Such a theoretical framework is developed and the two-dimensional nature of tissue decomposition based on attenuation measurements alone is explained. This theoretical framework forms the basis for analytical models of bone mineral measurement by dual energy X-ray photon absorptiometry techniques. Monte Carlo models of dual energy X-ray absorptiometry (DEXA) have been established. These models have been used to study the contribution of scattered radiation to the measurements. It has been demonstrated that the measurement geometry has a significant effect upon the scatter contribution to the detected signal. For the geometry of the models studied in this work the scatter has no significant effect upon the results of the measurements. The model has also been used to study a proposed technique which involves dual energy X-ray transmission measurements plus a linear measurement of the distance along the ray path. This is designated as the DPA( +) technique. The addition of the linear measurement enables the tissue decomposition to be extended to three components. Bone mineral, fat and lean soft tissue are the components considered here. The results of the model demonstrate that the measurement of bone mineral using this technique is stable over a wide range of soft tissue compositions and hence would indicate the potential to overcome a major problem of the two component DEXA technique. However, the results also show that the accuracy of the DPA( +) technique is highly dependent upon the composition of the non-mineral components of bone and has poorer precision (approximately twice the coefficient of variation) than the standard DEXA measurements. These factors may limit the usefulness of the technique. These studies illustrate the value of Monte Carlo computer modelling of quantitative X-ray measurement techniques. The Monte Carlo models of bone densitometry measurement have:- 1. demonstrated the significant effects of the measurement geometry upon the contribution of scattered radiation to the measurements, 2. demonstrated that the statistical precision of the proposed DPA( +) three tissue component technique is poorer than that of the standard DEXA two tissue component technique, 3. demonstrated that the proposed DPA(+) technique has difficulty providing accurate simultaneous measurement of body composition in terms of a three component model of fat, lean soft tissue and bone mineral,4. and provided a knowledge base for input to decisions about development (or otherwise) of a physical prototype DPA( +) imaging system. The Monte Carlo computer code, data, utilities and associated models represent a set of significant, accurate and valid modelling tools for quantitative studies of physical problems in the fields of diagnostic radiology and radiography.
Resumo:
Expert knowledge is valuable in many modelling endeavours, particularly where data is not extensive or sufficiently robust. In Bayesian statistics, expert opinion may be formulated as informative priors, to provide an honest reflection of the current state of knowledge, before updating this with new information. Technology is increasingly being exploited to help support the process of eliciting such information. This paper reviews the benefits that have been gained from utilizing technology in this way. These benefits can be structured within a six-step elicitation design framework proposed recently (Low Choy et al., 2009). We assume that the purpose of elicitation is to formulate a Bayesian statistical prior, either to provide a standalone expert-defined model, or for updating new data within a Bayesian analysis. We also assume that the model has been pre-specified before selecting the software. In this case, technology has the most to offer to: targeting what experts know (E2), eliciting and encoding expert opinions (E4), whilst enhancing accuracy (E5), and providing an effective and efficient protocol (E6). Benefits include: -providing an environment with familiar nuances (to make the expert comfortable) where experts can explore their knowledge from various perspectives (E2); -automating tedious or repetitive tasks, thereby minimizing calculation errors, as well as encouraging interaction between elicitors and experts (E5); -cognitive gains by educating users, enabling instant feedback (E2, E4-E5), and providing alternative methods of communicating assessments and feedback information, since experts think and learn differently; and -ensuring a repeatable and transparent protocol is used (E6).
Resumo:
This investigation describes the prevalence of upper-body symptoms in a population-based sample of women with breast cancer (BC) and examines their relationships with upper-body function (UBF) and lymphoedema, as two clinically important sequelae. Australian women (n=287) with unilateral BC were assessed at three-monthly intervals, from six to 18 months post-surgery (PS). Participants reported the presence and intensity of upper-body symptoms on the treated side. Objective and self-reported UBF and lymphoedema (bioimpedance spectroscopy) were also assessed. Approximately 50% of women reported at least one moderate-to-extreme symptom at 6- and at 18-months PS. There was a significant relationship between symptoms and function (p<0.01), whereby perceived and objective function declined with increasing number of symptoms present. Those with lymphoedema were more likely to report multiple symptoms and presence of symptoms at baseline increased risk of lymphoedema (ORs>1.3, p=0.02). Although, presence of symptoms explained only 5.5% of the variation in the odds of lymphoedema. Upper-body symptoms are common and persistent following breast cancer and are associated with clinical ramifications, including reduced UBF and increased risk of developing lymphoedema. However, using the presence of symptoms as a diagnostic indicator of lymphoedema is limited.
Resumo:
This paper presents the results of a structural equation model (SEM) that describes and quantifies the relationships between corporate culture and safety performance. The SEM is estimated using 196 individual questionnaire responses from three companies with better than average safety records. A multiattribute analysis of corporate safety culture characteristics resulted in a hierarchical description of corporate safety culture comprised of three major categories — people, process, and value. These three major categories were decomposed into 54 measurable questions and used to develop a questionnaire to quantify corporate safety culture. The SEM identified five latent variables that describe corporate safety culture: (1) a company’s safety commitment; (2) the safety incentives that are offered to field personal for safe performance; (3) the subcontractor involvement in the company culture; (4) the field safety accountability and dedication; and (5) the disincentives for unsafe behaviors. These characteristics of company safety culture serve as indicators for a company’s safety performance. Based on the findings from this limited sample of three companies, this paper proposes a list of practices that companies may consider to improve corporate safety culture and safety performance. A more comprehensive study based on a larger sample is recommended to corroborate the findings of this study.