937 resultados para Poly(propylene) (PP)
Resumo:
The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx(2)) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx(2) films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of approximate to 185cm(2)/C. The electrochemical properties of PProDOT-Hx(2) films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx(2) thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.
Resumo:
Ethylene-propylene diene terpolymer (EPDM) was functionalized with glycidyl methacrylate (GMA) during melt processing by free radical grafting with peroxide initiation in the presence and absence of a reactive comonomer trimethylolpropane triacrylate (Tris). Increasing the peroxide concentration resulted in an increase in the GMA grafting yield, albeit the overall grafting level was low and was accompanied by higher degree of crosslinking of EPDM which was found to be the major competing reaction. The presence of Tris in the grafting system gave rise to higher grafting yield produced at a much lower peroxide concentration though the crosslinking reactions remained high but without the formation of GMA-homopolymer in either of the two systems. The use of these functionalized EPDM (f-EPDM) samples with PET as compatibilisers in binary and ternary blends of PET/EPDM/f-EPDM was evaluated. The influence of the different functionalisation routes of the rubber phase (in presence and absence of Tris) and the effect of the level of functionality and microstructure of the resultant f-EPDM on the extent of the interfacial reaction, morphology and mechanical properties was also investigated. It is suggested that the mechanical properties of the blends are strongly influenced by the performance of the graft copolymer, which is in turn, determined by the level of functionality, molecular structure of the functionalized rubber and the interfacial concentration of the graft copolymer across the interface. The cumulative evidence obtained from torque rheometry, scanning electron microscopy, SEM, dynamic mechanical analysis (DMA), tensile mechanical tests and Fourier transform infrared (FTIR) supports this. It was shown that binary and ternary blends prepared with f-EPDM in the absence of Tris and containing lower levels of g-GMA effected a significant improvement in mechanical properties. This increase, particularly in elongation to break, could be accounted for by the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET that would result in a graft copolymer which could, most probably, preferentially locate at the interface, thereby acting as an 'emulsifier' responsible for decreasing the interfacial tension between the otherwise two immiscible phases. This is supported by results from FTIR analysis of the fractionated PET phase of these blends which confirm the formation of an interfacial reaction, DMA results which show a clear shift in the T s of the blend components and SEM results which reveal very fine morphology, suggesting effective compatibilisation that is concomitant with the improvement observed in their tensile properties. Although Tris has given rise to highest amount of g-GMA, it resulted in lower mechanical properties than the optimized blends produced in the absence of Tris. This was attributed to the difference in the microstructure of the graft and the level of functionality in these samples resulting in less favourable structure responsible for the coarser dispersion of the rubber phase observed by SEM, the lower extent of T shift of the PET phase (DMA), the lower height of the torque curve during reactive blending and FTIR analysis of the separated PET phase that has indicated a lower extent of the interfacial chemical reaction between the phases in this Tris-containing blend sample. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Solid polymer electrolytes (SPEs) of poly(ethyleneoxide) and magnesium triflate, which are plasticized with propylene carbonate (PC), ethylene carbonate (EC) and a mixture of PC and EC, are studied for their conductivity, ac impedance of the Mg I SPE interface, cyclic voltammetry, infrared spectroscopy and differential scanning calorimetry. in the presence of plasticizers, the ionic conductivity (a) increases from a value of 1 x 10(-8) S cm(-1) to about 1 x 10(-4) S cm(-1) at ambient temperature. The a is found to follow a VTF relationship with temperature. The values of the activation energy, pre-exponential factor and equilibrium glass transition temperature are shown to depend on the concentration of plasticizer. Ac impedance studies indicate lower interfacial impedance of Mg/plasticized SPE than stainless steel/plasticized SPE. The impedance spectra are analyzed using a non-linear least square curve fitting technique and the interfacial resistance of Mg/plasticized SPE is evaluated. The cyclic voltammetric results suggest a quasireversible type of Mg/Mg2+ couple in plasticized SPE. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A diblcok copolymer monomethoxy poly (ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate) (MPEG-b-P(LA-co-MCC)) was obtained by copolymerization of L-lactide (LA) and 2-methyl-2-benzoxycarbonyl-propylene carbonate (MBC) and subsequent catalytic hydrogenation. The pendant carboxyl groups of the copolymer MPEG-b-P(LA-co-MCC) were conjugated with antitumor drug docetaxel and tripeptide arginine-glycine-aspartic acid (RGD), respectively.
Resumo:
Finding a Suitable plasticizer for polylactide (PLA) is necessary to overcome its brittleness and enlarge its range of applications. In this study, commercial PLA was melt-blended with a new plasticizer, an ethylene glycol/propylene glycol random copolymer [poly(ethylene glycol-co-propylene glycol) (PEPG)] with a typical number-average molecular weight of 1.2 kDa and an ethylene glycol content of 78.7 mol %. The thermal properties, crystallization behavior, and mechanical properties of the quenched blends and the properties of the blends after storage for 2 months under the ambient conditions were investigated in detail. The advantage of using PEPG is that it does not crystallize at room temperature and has good compatibility with PLA. The quenched PLA/PEPG blends were homogeneous and amorphous systems. With an increase in the PEPG content (5-20%), the glass-transition temperature, tensile strength, and modulus of the blends decreased, whereas the elongation at break and crystallizability increased dramatically. The cold crystallization of PLA resulted in phase separation of the PLA/PEPG blends by annealing of the blends at the crystallization temperature.
Resumo:
Preparation of poly(vinylidene fluoride-co-hexafluoro propylene) (F2.6) flat-sheet asymmetric porous membrane has been studied for the first time. Factors affecting F2.6 membrane pore structure and permeate performance, such as macromolecule pore formers (polyethylene glycol-400, 1000, 1540, 2000 and 6000), the small molecule former (glycerol), swelling agent (trimethyl phosphate) in casting solution, precipitating bath component and temperature, exposure time and ambient humidity, were investigated in detail. Average pore radius and porosity were used to characterize F2.6 membrane structure, and respectively, determined by ultrafiltration and gravimetric method for the wet membrane. Morphology of the resultant membranes was observed by scanning electronic microscopy (SEM). Final test on permeate performance of F2.6 porous membrane was carried out by a direct contact membrane distillation (DCMD) setup. The experimental F2.6 membrane exhibits a higher distilled flux than PVDF membrane under the same operational situations. The determination of contact angle to distilled water also reveals higher hydrophobic nature than that of PVDF membrane.
Resumo:
Poly(ethylene-co-propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR-graft-GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR-graft-GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR-graft-GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR-graft-GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR-graft-GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR-graft-GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR-graft-GMA1.3 blend (1.3 indicates degree of grafting).
Resumo:
In this paper, unepoxidized ethylene propylene diene rubber (uEPDM) was first epoxidized with formic acid and H2O2, and then the epoxidized ethylene propylene diene rubber (eEPDM) was melt-mixed with PET resin in a Brabender-like apparatus. Toughening of PET matrix was achieved by this method. The dispersion of rubber particles and phase structure of the blends were also observed by SEM. It has been suggested that the epoxy groups in the eEPDM could react with PET end groups to form a graft copolymer which could act as an interfacial compatibilizer between the PBT matrix and eEPDM rubber dispersed phase. This is beneficial to the improvement of the impact performance of PBT. (C) 1997 Elsevier Science Ltd.
Resumo:
Blends of poly (butylene terephthalate) (PBT) and epoxided ethylene-propylene-diene terpolymer (EEPDM) were prepared. Their mechanical properties and morphology were studied by Izod impact test machine and scanning electronic microscope respectively, It was found that the notched Izod impact strength of blend PBT/EEPDM was as about 23 times as that of pure PET and about 10 times as that of blend PBT/EPDM at room temperature, The dispersed rubber particles were much smaller and the phase boundary was more blurred in blend PBT/EEPDM than in blend PBT/EPDM. The toughness of blend PBT/EEPDM was much more better than that of blend PET and PBT/EPDM, which was in good agreement with the difference between their morphologies.
Resumo:
Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispersed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) with a series of poly(ethylene oxide-co-propylene oxide) (EPO) has been studied. It was found that the critical copolymer composition for achieving miscibility with phenoxy around 60-degrees-C is about 22 mol % ethylene oxide (EO). Some blends undergo phase separation at elevated temperatures, but there is no maximum in the miscibility window. The mean-field approach has been used to describe this homopolymer/copolymer system. From the miscibility maps and the melting-point depression of the crystallizable component in the blends, the binary interaction energy densities, B(ij), have been calculated for all three pairs. The miscibility of phenoxy with EPO is considered to be caused mainly by the intermolecular hydrogen-bonding interactions between the hydroxyl groups of phenoxy and the ether oxygens of the EO units in the copolymers, while the intramolecular repulsion between EO and propylene oxide units in the copolymers contributes relatively little to the miscibility.
Resumo:
This study examined the rheological/mucoadhesive properties of poly (acrylic acid) PAA organogels as platforms for drug delivery to the oral cavity. Organogels were prepared using PAA (3%, 5%, 10% w/w) dissolved in ethylene glycol (EG), propylene glycol (PG), 1,3-propylene glycol (1,3-PG), 1,5-propanediol (1,5-PD), polyethylene glycol 400 (PEG 400), or glycerol. All organogels exhibited pseudoplastic flow. The increase in storage (G') and loss (G '') moduli of organogels as a function of frequency was minimal, G '' was greater than G '' (at all frequencies), and the loss tangent <1, indicative of gel behavior. Organogels prepared using EG, PG, and 1,3-propanediol (1,3-PD) exhibited similar flow/viscoelastic properties. Enhanced rheological structuring was associated with organogels prepared using glycerol (in particular) and PEG 400 due to their interaction with adjacent carboxylic acid groups on each chain and on adjacent chains. All organogels (with the exception of 1,5-PD) exhibited greater network structure than aqueous PAA gels. Organogel mucoadhesion increased with polymer concentration. Greatest mucoadhesion was associated with glycerol-based formulations, whereas aqueous PAA gels exhibited the lowest mucoadhesion. The enhanced network structure and the excellent mucoadhesive properties of these organogels, both of which may be engineered through choice of polymer concentration/solvent type, may be clinically useful for the delivery of drugs to the oral cavity.