849 resultados para Platform of contact
Resumo:
It was widely anticipated that after the introduction of silicone hydrogel lenses, the risk of microbial keratitis would be lower than with hydrogel lenses because of the reduction in hypoxic effects on the corneal epithelium. Large-scale epidemiological studies have confirmed that the absolute and relative risk of microbial keratitis is unchanged with overnight use of silicone hydrogel materials. The key findings include the following: (1) The risk of infection with 30 nights of silicone hydrogel use is equivalent to 6 nights of hydrogel extended wear; (2) Occasional overnight lens use is associated with a greater risk than daily lens use; (3) The rate of vision loss due to corneal infection with silicone hydrogel contact lenses is similar to that seen in hydrogel lenses; (4) The spectrum of causative organisms is similar to that seen in hydrogel lenses, and the material type does not impact the corneal location of presumed microbial keratitis; and (5) Modifiable risk factors for infection include overnight lens use, the degree of exposure, failing to wash hands before lens handling, and storage case hygiene practice. The lack of change in the absolute risk of disease would suggest that exposure to large number of pathogenic organisms can overcome any advantages obtained from eliminating the hypoxic effects of contact lenses. Epidemiological studies remain important in the assessment of new materials and modalities. Consideration of an early adopter effect with studies involving new materials and modalities and further investigation of the impact of second-generation silicone hydrogel materials is warranted.
Resumo:
Background Universal postnatal contact services are provided in several Australian states, but their impact on women’s postnatal care experience has not been evaluated. Furthermore, there is lack of evidence or consensus about the optimal type and amount of postpartum care after hospital discharge for maternal outcomes. This study aimed to assess the impact of providing Universal Postnatal Contact Service (UPNCS) funding to public birthing facilities in Queensland, Australia on women’s postnatal care experiences, and associations between amount and type (telephone or home visits) of contact on parenting confidence, and perceived sufficiency and quality of postnatal care. Methods Data collected via retrospective survey of postnatal women (N = 3,724) were used to compare women who birthed in UPNCS-funded and non-UPNCS-funded facilities on parenting confidence, sufficiency of postnatal care, and perceived quality of postnatal care. Associations between receiving telephone and home visits and the same outcomes, regardless of UPNCS funding, were also assessed. Results Women who birthed in an UPNCS-funded facility were more likely to receive postnatal contact, but UPNCS funding was not associated with parenting confidence, or perceived sufficiency or perceived quality of care. Telephone contact was not associated with parenting confidence but had a positive dose–response association with perceived sufficiency and quality. Home visits were negatively associated with parenting confidence when 3 or more were received, had a positive dose–response association with perceived sufficiency and were positively associated with perceived quality when at least 6 were received. Conclusions Funding for UPNCS is unlikely to improve population levels of maternal parenting confidence, perceived sufficiency or quality of postpartum care. Where only minimal contact can be provided, telephone may be more effective than home visits for improving women’s perceived sufficiency and quality of care. Additional service initiatives may be needed to improve women’s parenting confidence.
Resumo:
We thank Dr Shedden and Dr Pall for their insightful comments and the opportunity to clarify a number of points from our work.1 The “protection factor” (PF) expressed as the inverse of the transmittance of contact lens (CL) material (1/Tλ), where T is the percentage transmittance of ultraviolet radiation (UVR) in a given waveband (UVC, UVB or UVA) of the UV spectrum for contact lenses is the standard method for reporting PF values and as such there should not be any controversy. We have calculated the PF for each wavelength across the entire UV spectrum (UVC, UVB, UVA) as presented in figure 3 of our previous publication.1 In that article, we were simply stating the observation when transmission in the UVC spectra band is considered especially because appreciable amounts of potentially carcinogenic short UV wavelengths was shown to be present in sunlight in our region three decades ago2 and these short wavelength photons are reported to be more biologically damaging to ocular tissues.3 In addition, the depletion of the Ozone layer is still continuing. Nevertheless, we understand the concern of the authors that the results of the PF might be confusing to those who are not familiar with the science of UVR and as such we have made some revisions to the findings of the calculated PF...
Resumo:
In the study, we used the Agilent 8453 spectrophotometer (which is equipped with a limiting aperture that restricts the light beam to the central 5 mm of the contact lens), to measure the transmittance of various coloured contact lenses including the one Day Acuvue define manufactured by Johnson and Johnson which the authors represent. We measured the instrument baseline before the transmittance spectra of lenses were tested. The values of lens transmittances were thus the difference between baseline and lens measurement at each time. The transmittance measurements were obtained at 0.5 nm intervals, from 200 to 700 nm after a soak in saline to remove the influence of any surface active agents within the packaging products. The technique used in our study was not very different from how other research studies [2], [3], [4], [5] and [6] have measured the spectra transmittances of contact lenses...
Resumo:
Transforming growth factor β signalling through Smad3 in allergy Allergic diseases, such as atopic dermatitis, asthma, and contact dermatitis are complex diseases influenced by both genetic and environmental factors. It is still unclear why allergy and subsequent allergic disease occur in some individuals but not in others. Transforming growth factor (TGF)-β is an important immunomodulatory and fibrogenic factor that regulates cellular processes in injured and inflamed skin. TGF-β has a significant role in the regulation of the allergen-induced immune response participating in the development of allergic and asthmatic inflammation. TGF-β is known to be an immunomodulatory factor in the progression of delayed type hypersensitivity reactions and allergic contact dermatitis. TGF-β is crucial in regulating the cellular responses involved in allergy, such as differentiation, proliferation and migration. TGF-β signals are delivered from the cytoplasm to the nucleus by TGF-β signal transducers called Smads. Smad3 is a major signal transducer in TGF-β -signalling that controls the expression of target genes in the nucleus in a cell-type specific manner. The role of TGF-β-Smad3 -signalling in the immunoregulation and pathophysiology of allergic disorders is still poorly understood. In this thesis, the role of TGF-β-Smad -signalling pathway using Smad3 -deficient knock out mice in the murine models of allergic diseases; atopic dermatitis, asthma and allergic contact reactions, was examined. Smad3-pathway regulates allergen induced skin inflammation and systemic IgE antibody production in a murine model atopic dermatitis. The defect in Smad3 -signalling decreased Th2 cytokine (IL-13 and IL-5) mRNA expression in the lung, modulated allergen induced specific IgG1 response, and affected mucus production in the lung in a murine model of asthma. TGF-β / Smad3 -signalling contributed to inflammatory hypersensitivity reactions and disease progression via modulation of chemokine and cytokine expression and inflammatory cell recruitment, cell proliferation and regulation of the specific antibody response in a murine model of contact hypersensitivity. TGF-β modulates inflammatory responses - at least partly through the Smad3 pathway - but also through other compensatory, non-Smad-dependent pathways. Understanding the effects of the TGF-β signalling pathway in the immune system and in disease models can help in elucidating the multilevel effects of TGF-β. Unravelling the mechanisms of Smad3 may open new possibilities for treating and preventing allergic responses, which may lead to severe illness and loss of work ability. In the future the Smad3 signalling pathway might be a potential target in the therapy of allergic diseases.
Resumo:
Experimental studies are presented to show the effect of thermal stresses on thermal contact conductance (TCC) at low contact pressures. It is observed that in a closed contact assembly, contact pressure acting on the interface changes with the changing temperature of contact members. This change in contact pressure consequently causes variations in the TCC of the junction. A relationship between temperature change and the corresponding magnitude of developed thermal stress in a contact assembly is determined experimentally. Inclusion of a term called temperature dependent load correction factor is suggested in the theoretical model for TCC to make it capable of predicting TCC values more accurately in contact assemblies that experience large temperature fluctuations. [DOI: 10.1115/1.4001615]
Resumo:
Tribology of a well known solid lubricant molybdenum disulphide is studied here in water and oil medium, over a large range of contact dimensions. Lateral force microscopy is used to identify the deformation modes, intra-crystalline slip, plastic grooving, fragmentation and fracture, of single particles The medium and agglomeration were found to dictate the deformation mode Steel on steel tribology lubricated by suspensions of these particles in liquid media was conducted over a range of contact pressure and sliding velocity. A scrutiny of the frictional data with the aid of Raman spectroscopy to identify the transfer film, suggested that the particle size, as it is at contact, is an important tribological parameter Ultrasonication of the suspension and dispersion of the particle by surfactants were used to control the apriori particle size fed into the suspension.Correspondence of friction data of the gently sonicated suspension with that of the ultrasonicated suspension with dispersants indicated the importance of liquid ingestion by these particles as it controls their mode of deformation and consequent tribology. (C) 2010 Elsevier B V All rights reserved.
Resumo:
Thermal contact conductance (TCC) measurements are made on bare and gold plated (<= 0.5 mu m) oxygen free high conductivity (OFHC) Cu and brass contacts in vacuum, nitrogen, and argon environments. It is observed that the TCC in gaseous environment is significantly higher than that in vacuum due to the enhanced thermal gap conductance. It is found that for a given contact load and gas pressure, the thermal gap conductance for bare OFHC Cu contacts is higher than that for gold plated contacts. It is due to the difference in the molecular weights of copper and gold, which influences the exchange of kinetic energy between the gas molecules and contact surfaces. Furthermore, the gap conductance is found to increase with increasing thickness of gold plating. Topography measurements and scanning electron microscopy (SEM) analysis of contact surfaces revealed that surfaces become smoother with increasing gold plating thickness, thus resulting in smaller gaps and consequently higher gap conductance. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Microbes in natural and artificial environments as well as in the human body are a key part of the functional properties of these complex systems. The presence or absence of certain microbial taxa is a correlate of functional status like risk of disease or course of metabolic processes of a microbial community. As microbes are highly diverse and mostly notcultivable, molecular markers like gene sequences are a potential basis for detection and identification of key types. The goal of this thesis was to study molecular methods for identification of microbial DNA in order to develop a tool for analysis of environmental and clinical DNA samples. Particular emphasis was placed on specificity of detection which is a major challenge when analyzing complex microbial communities. The approach taken in this study was the application and optimization of enzymatic ligation of DNA probes coupled with microarray read-out for high-throughput microbial profiling. The results show that fungal phylotypes and human papillomavirus genotypes could be accurately identified from pools of PCR amplicons generated from purified sample DNA. Approximately 1 ng/μl of sample DNA was needed for representative PCR amplification as measured by comparisons between clone sequencing and microarray. A minimum of 0,25 amol/μl of PCR amplicons was detectable from amongst 5 ng/μl of background DNA, suggesting that the detection limit of the test comprising of ligation reaction followed by microarray read-out was approximately 0,04%. Detection from sample DNA directly was shown to be feasible with probes forming a circular molecule upon ligation followed by PCR amplification of the probe. In this approach, the minimum detectable relative amount of target genome was found to be 1% of all genomes in the sample as estimated from 454 deep sequencing results. Signal-to-noise of contact printed microarrays could be improved by using an internal microarray hybridization control oligonucleotide probe together with a computational algorithm. The algorithm was based on identification of a bias in the microarray data and correction of the bias as shown by simulated and real data. The results further suggest semiquantitative detection to be possible by ligation detection, allowing estimation of target abundance in a sample. However, in practise, comprehensive sequence information of full length rRNA genes is needed to support probe design with complex samples. This study shows that DNA microarray has the potential for an accurate microbial diagnostic platform to take advantage of increasing sequence data and to replace traditional, less efficient methods that still dominate routine testing in laboratories. The data suggests that ligation reaction based microarray assay can be optimized to a degree that allows good signal-tonoise and semiquantitative detection.
Resumo:
A more generalized model of a beam resting on a tensionless Reissner foundation is presented. Compared with the Winkler foundation model, the Reissner foundation model is a much improved one. In the Winkler foundation model, there is no shear stress inside the foundation layer and the foundation is assumed to consist of closely spaced, independent springs. The presence of shear stress inside Reissner foundation makes the springs no longer independent and the foundation to deform as a whole. Mathematically, the governing equation of a beam on Reissner foundation is sixth order differential equation compared with fourth order of Winkler one. Because of this order change of the governing equation, new boundary conditions are needed and related discussion is presented. The presence of the shear stress inside the tensionless Reissner foundation together with the unknown feature of contact area/length makes the problem much more difficult than that of Winkler foundation. In the model presented here, the effects of beam dimension, gap distance, loading asymmetry and foundation shear stress on the contact length are all incorporated and studied. As the beam length increases, the results of a finite beam with zero gap distance converge asymptotically to those obtained by the previous model for an infinitely long beam. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Ni/Au contact was treated with oxalic acid after annealing in O_2 ambient, and its I-V characteristic showed the property of contact has been obviously improved. An Auger electron spectroscopy (AES) depth pro-file of the contact as-annealed showed that the top layer was highly resistive NiO, while an X-ray photo-electron spectroscopy (XPS) of oxalic acid treated samples indicated that the NiO has been removed effectively. A scanning electron microscope (SEM) was used to observe the surface morphology of the contacts, and it was found that the lacunaris surface right after annealing became quite smooth with lots of small Au exposed areas after oxalic acid treatment. When the test probe or the subsequently deposited Ti/Au was directly in contact with these small Au areas, they worked as low resistive current paths and thus decrease the specific contact resistance.
Resumo:
The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.
Resumo:
Although intergroup contact is one of the most prominent interventions to reduce prejudice. the generalization of contact effects is still a contentious issue This research further examined the rarely studied secondary transfer effect (STE, Pettigrew, 2009) by which contact with a primary outgroup reduces prejudice toward secondary groups that are not directly involved in the contact Across 3 cross-sectional studies conducted in Cyprus (N = 1.653), Northern Ireland (N = 1,973). and Texas (N = 275) and 1 longitudinal study conducted in Northern Ireland (N = 411). the present research sought to systematically rule out alternative accounts of the STE and to investigate 2 potential mediating mechanisms (ingroup reappraisal and attitude generalization) Results indicated that, consistent with the STE. contact with a primary outgroup predicts attitudes toward secondary outgroups. over and above contact with the secondary outgroup, socially desirable responding. and prior attitudes Mediation analyses found strong evidence for attitude generalization but only limited evidence for ingroup reappraisal as an underlying process Two out of 3 tests of a reverse model, where contact with the secondary outgroup predicts attitudes toward the primary outgroup. provide further evidence for an indirect effect through attitude generalization Theoretical and practical implications of these results are discussed, and directions for future research are identified
Resumo:
Social identity complexity defines people's more or less complex cognitive representations of the interrelationships among their multiple ingroup identities. Being high in complexity is contingent on situational, cognitive, or motivational factors, and has positive consequences for intergroup relations. Two survey studies conducted in Northern Ireland examined the extent to which intergroup contact and distinctiveness threat act as antecedents, and outgroup attitudes as consequences, of social identity complexity. In both studies, contact was positively, and distinctiveness threat negatively, associated with complex multiple ingroup perceptions, whereas respondents with more complex identity structures also reported more favorable outgroup attitudes. Social identity complexity also mediated the effects of contact and distinctiveness threat on attitudes. This research highlights that the extent to which individuals perceive their multiple ingroups in more or less complex and differentiated ways is of central importance to understanding intergroup phenomena.