573 resultados para Plaques, plaquettes.
Resumo:
Background and purpose: To prospectively evaluate differences in carotid plaque characteristics in symptomatic and asymptomatic patients using high resolution MRI. Methods: 20 symptomatic and 20 asymptomatic patients, with at least 50% carotid stenosis as determined by Doppler ultrasound, underwent preoperative in vivo multispectral MRI of the carotid arteries. Studies were analysed both qualitatively and quantitatively in a randomised manner by two experienced readers in consensus, blinded to clinical status, and plaques were classified according to the modified American Heart Association (AHA) criteria. Results: After exclusion of poor quality images, 109 MRI sections in 18 symptomatic and 19 asymptomatic patients were available for analysis. There were no significant differences in mean luminal stenosis severity (72.9% vs 67.6%; p = 0.09) or plaque burden (median plaque areas 50 mm2 vs 50 mm 2; p = 0.858) between the symptomatic and asymptomatic groups. However, symptomatic lesions had a higher incidence of ruptured fibrous caps (36.5% vs 8.7%; p = 0.004), haemorrhage or thrombus (46.5% vs 14.0%; p<0.001), large necrotic lipid cores (63.8% vs 28.0%; p = 0.002) and complicated type VI AHA lesions (61.5% vs 28.1%; p = 0.001) compared with asymptomatic lesions. The MRI findings of plaque haemorrhage or thrombus had an odds ratio of 5.25 (95% CI 2.08 to 13.24) while thin or ruptured fibrous cap (as opposed to a thick fibrous cap) had an odds ratio of 7.94 (95% CI 2.93 to 21.51) for prediction of symptomatic clinical status. Conclusions: There are significant differences in plaque characteristics between symptomatic and asymptomatic carotid atheroma and these can be detected in vivo by high resolution MRI.
Resumo:
BACKGROUND AND PURPOSE Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. The study explores the relationship between the degree of Magnetic Resonance (MR)"defined inflammation using Ultra Small Super-Paramagnetic Iron Oxide (USPIO) particles and the severity of luminal stenosis in asymptomatic carotid plaques. METHODS Seventy-one patients with an asymptomatic carotid stenosis of ĝ‰¥40% underwent multi-sequence USPIO-enhanced MR imaging. Stenosis severity was measured according to the NASCET and ECST methods. RESULTS No demonstrable relationship between inflammation as measured by USPIO-enhanced signal change and the degree of luminal stenosis was found. CONCLUSIONS Inflammation and stenosis are likely to be independent risk factors, although this needs to be further validated.
Resumo:
Objective: The aim of this study was to explore whether there is a relationship between the degree of MR-defined inflammation using ultra small super-paramagnetic iron oxide (USPIO) particles, and biomechanical stress using finite element analysis (FEA) techniques, in carotid atheromatous plaques. Methods and Results: 18 patients with angiographically proven carotid stenoses underwent multi-sequence MR imaging before and 36 h after USPIO infusion. T2 * weighted images were manually segmented into quadrants and the signal change in each quadrant normalised to adjacent muscle was calculated after USPIO administration. Plaque geometry was obtained from the rest of the multi-sequence dataset and used within a FEA model to predict maximal stress concentration within each slice. Subsequently, a new statistical model was developed to explicitly investigate the form of the relationship between biomechanical stress and signal change. The Spearman's rank correlation coefficient for USPIO enhanced signal change and maximal biomechanical stress was -0.60 (p = 0.009). Conclusions: There is an association between biomechanical stress and USPIO enhanced MR-defined inflammation within carotid atheroma, both known risk factors for plaque vulnerability. This underlines the complex interaction between physiological processes and biomechanical mechanisms in the development of carotid atheroma. However, this is preliminary data that will need validation in a larger cohort of patients.
Resumo:
Background Because many acute cerebral ischemic events are caused by rupture of vulnerable carotid atheroma and subsequent thrombosis, the present study used both idealized and patient-specific carotid atheromatous plaque models to evaluate the effect of structural determinants on stress distributions within plaque. Methods and Results Using a finite element method, structural analysis was performed using models derived from in vivo high-resolution magnetic resonance imaging (MRI) of carotid atheroma in 40 non-consecutive patients (20 symptomatic, 20 asymptomatic). Plaque components were modeled as hyper-elastic materials. The effects of varying fibrous cap thickness, lipid core size and lumen curvature on plaque stress distributions were examined. Lumen curvature and fibrous cap thickness were found to be major determinants of plaque stress. The size of the lipid core did not alter plaque stress significantly when the fibrous cap was relatively thick. The correlation between plaque stress and lumen curvature was significant for both symptomatic (p = 0.01; correlation coefficient: 0.689) and asymptomatic patients (p = 0.01; correlation coefficient: 0.862). Lumen curvature in plaques of symptomatic patients was significantly larger than those of asymptomatic patients (1.50±1.0mm-1 vs 1.25±0.75 mm-1; p = 0.01). Conclusion Specific plaque morphology (large lumen curvature and thin fibrous cap) is closely related to plaque vulnerability. Structural analysis using high-resolution MRI of carotid atheroma may help in detecting vulnerable atheromatous plaque and aid the risk stratification of patients with carotid disease.
Resumo:
Background: More than half of all cerebral ischemic events are the result of rupture of extracranial plaques. The clinical determination of carotid plaque vulnerability is currently based solely on luminal stenosis; however, it has been increasingly suggested that plaque morphology and biomechanical stress should also be considered. We used finite element analysis based on in vivo magnetic resonance imaging (MRI) to simulate the stress distributions within plaques of asymptomatic and symptomatic individuals. Methods: Thirty nonconsecutive subjects (15 symptomatic and 15 asymptomatic) underwent high-resolution multisequence in vivo MRI of the carotid bifurcation. Stress analysis was performed based on the geometry derived from in vivo MRI of the carotid artery at the point of maximal stenosis. The finite element analysis model considered plaque components to be hyperelastic. The peak stresses within the plaques of symptomatic and asymptomatic individuals were compared. Results: High stress concentrations were found at the shoulder regions of symptomatic plaques, and the maximal stresses predicted in this group were significantly higher than those in the asymptomatic group (508.2 ± 193.1 vs 269.6 ± 107.9 kPa; P = .004). Conclusions: Maximal predicted plaque stresses in symptomatic patients were higher than those predicted in asymptomatic patients by finite element analysis, suggesting the possibility that plaques with higher stresses may be more prone to be symptomatic and rupture. If further validated by large-scale longitudinal studies, biomechanical stress analysis based on high resolution in vivo MRI could potentially act as a useful tool for risk assessment of carotid atheroma. It may help in the identification of patients with asymptomatic carotid atheroma at greatest risk of developing symptoms or mild-to-moderate symptomatic stenoses, which currently fall outside current clinical guidelines for intervention.
Resumo:
Background: Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The role of calcium deposition and its contribution to plaque stability is controversial. This study uses both an idealized and a patient-specific model to evaluate the effect of a calcium deposit on the stress distribution within an atheromatous plaque. Methods: Using a finite-element method, structural analysis was performed on an idealized plaque model and the location of a calcium deposit within it was varied. In addition to the idealized model, in vivo high-resolution MR imaging was performed on 3 patients with carotid atheroma and stress distributions were generated. The individual plaques were chosen as they had calcium at varying locations with respect to the lumen and the fibrous cap. Results: The predicted maximum stress was increased by 47.5% when the calcium deposit was located in the thin fibrous cap in the model when compared with that in a model without a deposit. The result of adding a calcium deposit either to the lipid core or remote from the lumen resulted in almost no increase in maximal stress. Conclusion: Calcification at the thin fibrous cap may result in high stress concentrations, ultimately increasing the risk of plaque rupture. Assessing the location of calcification may, in the future, aid in the risk stratification of patients with carotid stenosis.
Resumo:
Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. USPIO-enhanced MRI imaging is a promising non-i nvasive method to identify high-risk atheromatous plaque inflammation in vivo in humans, in which areas of focal signal loss on MR images have been shown to correspond to the location of activated macrophages, typically at the shoulder regions of the plaque. This is the first report in humans describing simultaneous USPIO uptake within atheroma in two different arterial territories and again emphasises that atherosclerosis is a truly systemic disease. With further work, USPIO-enhanced MR imaging may be useful in identifying inflamed vulnerable atheromatous plaques in vivo, so refining patient selection for intervention and allowing appropriate early aggressive pharmacotherapy to prevent plaque rupture.
Resumo:
BACKGROUND AND PURPOSE It is well known that the vulnerable atheromatous plaque has a thin, fibrous cap and large lipid core with associated inflammation. This inflammation can be detected on MRI with use of a contrast medium, Sinerem, an ultrasmall superparamagnetic iron oxide (USPIO). Although the incidence of macrophage activity in asymptomatic disease appears low, we aimed to explore the incidence of MRI-defined inflammation in asymptomatic plaques in patients with known contralateral symptomatic disease. METHODS Twenty symptomatic patients underwent multisequence MRI before and 36 hours after USPIO infusion. Images were manually segmented into quadrants, and the signal change in each quadrant was calculated after USPIO administration. A mixed mathematical model was developed to compare the mean signal change across all quadrants in the 2 groups. Patients had a mean symptomatic stenosis of 77% compared with 46% on their asymptomatic side, as measured by conventional angiography. RESULTS There were 11 (55%) men, and the median age was 72 years (range, 53 to 84 years). All patients had risk factors consistent with severe atherosclerotic disease. All symptomatic carotid stenoses had inflammation, as evaluated by USPIO-enhanced imaging. On the contralateral sides, inflammatory activity was found in 19 (95%) patients. Contralaterally, there were 163 quadrants (57%) with a signal loss after USPIO when compared with 217 quadrants (71%) on the symptomatic side (P=0.007). CONCLUSIONS - This study adds weight to the argument that atherosclerosis is a truly systemic disease. It suggests that investigation of the contralateral side in patients with symptomatic carotid stenosis can demonstrate inflammation in 95% of plaques, despite a mean stenosis of only 46%. Thus, inflammatory activity may be a significant risk factor in asymptomatic disease in patients who have known contralateral symptomatic disease. Patients with symptomatic carotid disease should have their contralateral carotid artery followed up.
Resumo:
Background and Purpose Acute cerebral ischemic events are associated with rupture of vulnerable carotid atheroma and subsequent thrombosis. Factors such as luminal stenosis and fibrous cap thickness have been thought to be important risk factors for plaque rupture. We used a flow-structure interaction model to simulate the interaction between blood flow and atheromatous plaque to evaluate the effect of the degree of luminal stenosis and fibrous cap thickness on plaque vulnerability. Methods A coupled nonlinear time-dependent model with a flow-plaque interaction simulation was used to perform flow and stress/strain analysis in a stenotic carotid artery model. The stress distribution within the plaque and the flow conditions within the vessel were calculated for every case when varying the fibrous cap thickness from 0.1 to 2 mm and the degree of luminal stenosis from 10% to 95%. A rupture stress of 300 kPa was chosen to indicate a high risk of plaque rupture. A 1-sample t test was used to compare plaque stresses with the rupture stress. Results High stress concentrations were found in the plaques in arteries with >70% degree of stenosis. Plaque stresses in arteries with 30% to 70% stenosis increased exponentially as fibrous cap thickness decreased. A decrease of fibrous cap thickness from 0.4 to 0.2 mm resulted in an increase of plaque stress from 141 to 409 kPa in a 40% degree stenotic artery. Conclusions There is an increase in plaque stress in arteries with a thin fibrous cap. The presence of a moderate carotid stenosis (30% to 70%) with a thin fibrous cap indicates a high risk for plaque rupture. Patients in the future may be risk stratified by measuring both fibrous cap thickness and luminal stenosis.
Resumo:
Atherosclerosis is a disease of the arteries; its characteristic features include chronic inflammation, extra- and intracellular lipid accumulation, extracellular matrix remodeling, and an increase in extracellular matrix volume. The underlying mechanisms in the pathogenesis of advanced atherosclerotic plaques, that involve local acidity of the extracellular fluid, are still incompletely understood. In this thesis project, my co-workers and I studied the different mechanisms by which local extracellular acidity could promote accumulation of the atherogenic apolipoprotein B-100 (apoB-100)-containing plasma lipoprotein particles in the inner layer of the arterial wall, the intima. We found that lipolysis of atherogenic apoB-100-containing plasma lipoprotein particles (LDL, IDL, and sVLDL) by the secretory phospholipase A2 group V (sPLA2-V) enzyme, was increased at acidic pH. Also, the binding of apoB-100-containing plasma lipoprotein particles to human aortic proteoglycans was dramatically enhanced at acidic pH. Additionally, lipolysis by sPLA2-V enzyme further increased this binding. Using proteoglycan-affinity chromatography, we found that sVLDL lipoprotein particles consist of populations, differing in their affinities toward proteoglycans. These populations also contained different amounts of apolipoprotein E (apoE) and apolipoprotein C-III (apoC-III); the amounts of apoC-III and apoE per particle were highest in the population with the lowest affinity toward proteoglycans. Since PLA2-modification of LDL particles has been shown to change their aggregation behavior, we also studied the effect of acidic pH on the monolayer structure covering lipoprotein particles after PLA2-induced hydrolysis. Using molecular dynamics simulations, we found that, in acidity, the monolayer is more tightly packed laterally; moreover, its spontaneous curvature is negative, suggesting that acidity may promote lipoprotein particles fusion. In addition to extracellular lipid accumulation, the apoB-100-containing plasma lipoprotein particles can be taken up by inflammatory cells, namely macrophages. Using radiolabeled lipoprotein particles and cell cultures, we showed that sPLA2-V-modification of LDL, IDL, and sVLDL lipoproteins particles, at neutral or acidic pH, increased their uptake by human monocyte-derived macrophages.
Resumo:
More than 40% of all deaths in Finland are caused by atherosclerosis. The complications of atherosclerosis are due to either detachment of the luminal endothelium (erosion) or rupture of the fibrous cap of an atherosclerotic plaque (rupture). As a result, a thrombus is formed at the site of the intimal lesion. Indeed, erosions cause roughly 40% of sudden atherothrombotic deaths and 25% of all atherothrombotic deaths. Erosions are overrepresented in young subjects, diabetics, smokers and women. This dissertation focuses on endothelial erosion. Endothelial erosions were studied in the context of arterial grafting and vascular inflammation. Special attention was given to the role of intimal mast cells and the methodological viewpoints of reliable identification of endothelial erosions. Mast cells are inflammatory cells mostly known for their ability to cause allergic symptoms. In addition to occurring in skin and mucosal surfaces, mast cells are abundant in arterial intima and adventitia. In this study, mast cells were found to associate with endothelial erosions in non-lesional and atherosclerotic human coronary arteries. Thus, mast cells may participate in atherogenesis at the initial phases of the disease process already. We also showed that the mast cell proteases tryptase, chymase, and cathepsin G are all capable of cleaving molecules essential for endothelial cell-to-cell and cell-to-extracellular matrix interactions, such as VE-cadherin and fibronectin. Symptom-causing carotid plaques were found to contain more inflammatory cells, especially mast cells, than non-symptom-causing plaques. Furthermore, the atherogenic serum lipid profile and the degree of carotid stenosis turned out to correlate with the density of carotid plaque mast cells. Apoptotic and proliferating cells were more abundant in non-symptom causing plaques (active renewal of endothelial cells), but erosions were larger in symptom-causing plaques (capacity of endothelial regeneration exceeded). The process of identifying endothelial erosions with immunostainings has been ambiguous, since both endothelial cells and platelets express largely the same antigens. This may have caused inaccurate interpretations of the presence of endothelial erosion. In the last substudy of this thesis we developed a double immunostaining method for simultaneous identification of endothelial cells and platelets. This method enables more reliable identification of endothelial erosions.
Resumo:
The leading cause of death in the Western world continues to be coronary heart disease (CHD). At the root of the disease process is dyslipidemia an aberration in the relevant amounts of circulating blood lipids. Cholesterol builds up in the arterial wall and following rupture of these plaques, myocardial infarction or stroke can occur. Heart disease runs in families and a number of hereditary forms are known. The leading cause of adult dyslipidemia presently however is overweight and obesity. This thesis work presents an investigation of the molecular genetics of common, hereditary dyslipidemia and the tightly related condition of obesity. Familial combined hyperlipidemia (FCHL) is the most common hereditary dyslipidemia in man with an estimated population prevalence of 1-6%. This complex disease is characterized by elevated levels of serum total cholesterol, triglycerides or both and is observed in about 20% of individuals with premature CHD. Our group identified the disease to be associated with genetic variation in the USF1 transcription factor gene. USF1 has a key role in regulating other genes that control lipid and glucose metabolism as well as the inflammatory response all central processes in the progression of atherosclerosis and CHD. The first two works of this thesis aimed at understanding how these USF1 variants result in increased disease risk. Among the many, non-coding single-nucleotide polymorphisms (SNPs) that associated with the disease, one was found to have a functional effect. The risk-enhancing allele of this SNP seems to eradicate the ability of the important hormone insulin to induce the expression of USF1 in peripheral tissues. The resultant changes in the expression of numerous USF1 target genes over time probably enhance and accelerate the atherogenic processes. Dyslipidemias often represent an outcome of obesity and in the final work of this thesis we wanted to address the metabolic pathways related to acquired obesity. It is recognized that active processes in adipose tissue play an important role in the development of dyslipidemia, insulin resistance and other pathological conditions associated with obesity. To minimize the confounding effects of genetic differences present in most human studies, we investigated a rare collection of identical twins that differed significantly in the amount of body fat. In the obese, but otherwise healthy young adults, several notable changes were observed. In addition to chronic inflammation, the adipose tissue of the obese co-twins was characterized by a marked (47%) decrease in amount of mitochondrial DNA (mtDNA) a change associated with mitochondrial dysfunction. The catabolism of branched chain amino acids (BCAAs) was identified as the most down-regulated process in the obese co-twins. A concordant increase in the serum level of these insulin secretagogues was identified. This hyperaminoacidemia may provide the feed-back signal from insulin resistant adipose tissue to the pancreas to ensure an appropriately augmented secretory response. The down regulation of BCAA catabolism correlated closely with liver fat accumulation and insulin. The single most up-regulated gene (5.9 fold) in the obese co-twins was osteopontin (SPP1) a cytokine involved in macrophage recruitment to adipose tissue. SPP1 is here implicated as an important player in the development of insulin resistance. These studies of exceptional study samples provide better understanding of the underlying pathology in common dyslipidemias and other obesity associated diseases important for future improvement of intervention strategies and treatments to combat atherosclerosis and coronary heart disease.
Resumo:
The records provide material relating to the accreditation, fundraising, management, planning, policies, programs, and public relations of a hospital that continues to serve the Greater Boston area. The records includes correspondence of various Presidents, Board Members, and Executive Directors; Board and committee minutes; scrapbooks, photographs, videotape, and film created by the Public Relations department; records of various Auxiliary groups; correspondence, reports, surveys, and other documents relating to the Pediatric Rehabilitation Program; and artifacts such as plaques, portraits, and silverware.
Resumo:
Atherosclerosis is an inflammatory disease progressing over years via the accumulation of cholesterol in arterial intima with subsequent formation of atherosclerotic plaques. The stability of a plaque is determined by the size of its cholesterol-rich necrotic lipid core and the thickness of the fibrous cap covering it. The strength and thickness of the cap are maintained by smooth muscle cells and the extracellular matrix produced by them. A plaque with a large lipid core and a thin cap is vulnerable to rupture that may lead to acute atherothrombotic events, such as myocardial infarction and stroke. In addition, endothelial erosion, possibly induced by apoptosis of endothelial cells, may lead to such clinical events. One of the major causes of plaque destabilization is inflammation induced by accumulated and modified lipoproteins, and exacerbated by local aberrant shear stress conditions. Macrophages, T-lymphocytes and mast cells infiltrate particularly into the plaque’s shoulder regions prone to atherothrombotic events, and they are present at the actual sites of plaque rupture and erosion. Two major mechanisms of plaque destabilization induced by inflammation are extracellular matrix remodeling and apoptosis. Mast cells are bone marrow-derived inflammatory cells that as progenitors upon chemotactic stimuli infiltrate the target tissues, such as the arterial wall, differentiate in the target tissues and mediate their effects via the release of various mediators, typically in a process called degranulation. The released preformed mast cell granules contain proteases such as tryptase, chymase and cathepsin G bound to heparin and chondroitin sulfate proteoglycans. In addition, various soluble mediators such as histamine and TNF-alpha are released. Mast cells also synthesize many mediators such as cytokines and lipid mediators upon activation. Mast cells are capable of increasing the level of LDL cholesterol in the arterial intima by increasing accumulation and retention of LDL and by decreasing removal of cholesterol by HDL in vitro. In addition, by secreting proinflammatory mediators and proteases, mast cells may induce plaque destabilization by inducing apoptosis of smooth muscle and endothelial cells. Also in vivo data from apoE-/- and ldlr-/- mice suggest a role for mast cells in the progression of atherosclerosis. Furthermore, mast cell-deficient mice have become powerful tools to study the effects of mast cells in vivo. In this study, evidence suggesting a role for mast cells in the regulation of plaque stability is presented. In a mouse model genetically susceptible to atherosclerosis, mast cell deficiency (ldlr-/-/KitW-sh/W-sh mice) was associated with a less atherogenic lipid profile, a decreased level of lipid accumulation in the aortic arterial wall and a decreased level of vascular inflammation as compared to mast-cell competent littermates. In vitro, mast cell chymase-induced smooth muscle cell apoptosis was mediated by inhibition of NF-kappaB activity, followed by downregulation of bcl-2, release of cytochrome c, and activation of caspase-8, -9 and -3. Mast cell-induced endothelial cell apoptosis was mediated by chymase and TNF-alpha, and involved chymase-mediated degradation of fibronectin and vitronectin, and inactivation of FAK- and Akt-mediated survival signaling. Subsequently, mast cells induced inhibition of NF-kappaB activity and activation of caspase-8 and -9. In addition, possible mast cell protease-mediated mechanisms of endothelial erosion may include degradation of fibronectin and VE-cadherin. Thus, the present results suggest a role for mast cells in destabilization of atherosclerotic plaques.
Resumo:
Atherosclerosis is an inflammatory disease characterized by accumulation of lipids and fibrous connective tissue in the arterial wall. Recently, it has been suggested that decrease in the pH of extracellular fluid of the arterial intima may enhance LDL accumulation by increasing binding of the LDL to matrix proteoglycans and also by making the plaque more favorable for acidic enzymes to be active. Many lysosomal acidic enzymes have been found in atherosclerotic plaques. In this thesis, we were able to induce secretion of lysosomal acidic cathepsin F from human monocyte-derived macrophages by stimulation with angiotensin II. We also showed that LDL pre-proteolyzed with cathepsin S was more prone to subsequent hydrolytic modifications by lipases. Especially acidic secretory sphingomyelinase was able to hydrolyze pre-proteolyzed LDL even at neutral pH. We also showed that the proteolyzed and lipolyzed LDL particles were able to bind more efficiently to human aortic proteoglycans. In addition, the role of extracellular acidic pH on the ability of macrophages to internalize LDL was studied. At acidic pH, the production of cell surface proteoglycans in macrophages was increased as well as the binding of native and modified LDL to cell surface proteoglycans. Furthermore, macrophages cultured at acidic pH showed increased internalization of modified and native LDL leading to foam cell formation. This thesis revealed various mechanisms by which acidic pH can increase LDL retention and accumulation in the arterial intima and has the potential to increase the progression of atherosclerosis.