968 resultados para Plant indicator species
Resumo:
The application of scientific-based conservation measures requires that sampling methodologies in studies modelling similar ecological aspects produce comparable results making easier their interpretation. We aimed to show how the choice of different methodological and ecological approaches can affect conclusions in nest-site selection studies along different Palearctic meta-populations of an indicator species. First, a multivariate analysis of the variables affecting nest-site selection in a breeding colony of cinereous vulture (Aegypius monachus) in central Spain was performed. Then, a meta-analysis was applied to establish how methodological and habitat-type factors determine differences and similarities in the results obtained by previous studies that have modelled the forest breeding habitat of the species. Our results revealed patterns in nesting-habitat modelling by the cinereous vulture throughout its whole range: steep and south-facing slopes, great cover of large trees and distance to human activities were generally selected. The ratio and situation of the studied plots (nests/random), the use of plots vs. polygons as sampling units and the number of years of data set determined the variability explained by the model. Moreover, a greater size of the breeding colony implied that ecological and geomorphological variables at landscape level were more influential. Additionally, human activities affected in greater proportion to colonies situated in Mediterranean forests. For the first time, a meta-analysis regarding the factors determining nest-site selection heterogeneity for a single species at broad scale was achieved. It is essential to homogenize and coordinate experimental design in modelling the selection of species' ecological requirements in order to avoid that differences in results among studies would be due to methodological heterogeneity. This would optimize best conservation and management practices for habitats and species in a global context.
Resumo:
With over 43,000 species, spiders are the largest predacious arthropod group. They have developed key characteristics such as multi-purpose silk types, venoms consisting of hundreds of components, locomotion driven by muscles and hydraulic pressure, a highly evolved key-lock mechanism between the complex genital structures, and many more unique features. After 300 million years of evolutionary refinement, spiders are present in all land habitats and represent one of the most successful groups of terrestrial organisms. Ecophysiology combines functional and evolutionary aspects of morphology, physiology, biochemistry and molecular biology with ecology. Cutting-edge science in spiders focuses on the circulatory and respiratory system, locomotion and dispersal abilities, the immune system, endosymbionts and pathogens, chemical communication, gland secretions, venom components, silk structure, structure and perception of colours as well as nutritional requirements. Spiders are valuable indicator species in agroecosystems and for conservation biology. Modern transfer and application technologies research spiders and their products with respect to their value for biomimetics, material sciences, and the agrochemical and pharmaceutical industries.
Resumo:
The montane forests of Mount Kilimanjaro in Tanzania have been subjected to a long history of selective logging. However, since 1984 logging of indigenous trees is prohibited. Today, these forests allow us to evaluate the long-term effects of selective logging. We mapped the height and diameter at breast height (DBH) of all trees >10 cm DBH on 10 sites of 0.25 ha. Five sites represent non-logged forests, another five selectively logged forests. We tested whether forests were still visibly affected 30–40 years after selective logging in terms of their forest structure and tree diversity. Additionally we compared tree densities of different species guilds, including disturbance-indicator species, late-successional species and main timber species. Furthermore, we specifically compared the community size distributions of selectively logged and non-logged forests, first across all species and then for the most important timber species, Ocotea usambarensis, alone. 30–40 years after selective logging forests still showed a higher overall stem density, mainly due to higher relative abundances of small trees (<50 cm DBH) in general, and higher densities of small size class stems of late-successional species specifically. For O. usambarensis, the selectively logged sites harboured higher relative abundances of small trees and lower relative abundances of harvestable trees. The higher relative abundance of small O. usambarensis-stems in selectively logged forests appears promising for future forest recovery. Thus, outside protected areas, selective logging may be a sustainable management option if logging cycles are considerably longer than 40 years, enough large source trees remain, and the recruiting O. usambarensis individuals find open space for their establishment.
Resumo:
Sphagnum peatlands in the oceanic-continental transition zone of Poland are currently influenced by climatic and anthropogenic factors that lead to peat desiccation and susceptibility to fire. Little is known about the response of Sphagnum peatland testate amoebae (TA) to the combined effects of drought and fire. To understand the relationships between hydrology and fire dynamics, we used high-resolution multi-proxy palaeoecological data to reconstruct 2000 years of mire history in northern Poland. We employed a new approach for Polish peatlands – joint TA-based water table depth and charcoal-inferred fire activity reconstructions. In addition, the response of most abundant TA hydrological indicators to charcoal-inferred fire activity was assessed. The results show four hydrological stages of peatland development: moderately wet (from ∼35 BC to 800 AD), wet (from ∼800 to 1390 AD), dry (from ∼1390 to 1700 AD) and with an instable water table (from ∼1700 to 2012 AD). Fire activity has increased in the last millennium after constant human presence in the mire surroundings. Higher fire activity caused a rise in the water table, but later an abrupt drought appeared at the onset of the Little Ice Age. This dry phase is characterized by high ash contents and high charcoal-inferred fire activity. Fires preceded hydrological change and the response of TA to fire was indirect. Peatland drying and hydrological instability was connected with TA community changes from wet (dominance of Archerella flavum, Hyalosphenia papilio, Amphitrema wrightianum) to dry (dominance of Cryptodifflugia oviformis, Euglypha rotunda); however, no clear fire indicator species was found. Anthropogenic activities can increase peat fires and cause substantial hydrology changes. Our data suggest that increased human fire activity was one of the main factors that influenced peatland hydrology, though the mire response through hydrological changes towards drier conditions was delayed in relation to the surrounding vegetation changes.
Resumo:
A high-resolution planktonic foraminifer record from a core recovered from the South China Sea (SCS) (Sonne 17938-2: 19°47.2'N, 117° 32.3E; 2840 m; Delta t c. 250-1000 years) shows rapid millennial-scale changes in the western Pacific marginal sea climate during the last 30,000 years. The SCS is the largest western Pacific marginal sea off the southeast Asian continent, the area today dominated by seasonal monsoon changes. Quantitative analyses of planktonic foraminifer faunal abundance data frorn the core indicate large downcore variations in the relative abundances of the dominant taxa since about 30,000 years ago in the isotope stage 3. Further analyses indicate that the abundance of G. inflata, a good indicator species for cold SST (~13°-19°C) and deep MLD (~100-125 m) waters shows abrupt shifts. During stages 2 and 3, the abundance record of G. infiata tends to be punctuated by quasi-periodie short intervals (~2000-3000 yrs) where its abundance reaches 15% or greater, superimposed on generally low (5-10%) background values. This pattern suggests an instability of surface ocean conditions of the SCS during the past 30,000 years. The abrupt abundance changes of G. infiata correlate well with similar climatic changes observed from a GISP2 ice core 8180, and North Atlantic core DSDP 609 N. pachyderma (s.) and lithic grain abundances during 'Heinrich evcnts'. These results suggest that the millennial-scale variability of climate is not peculiar to the Atlantic region. Apparently, the rapid SCS climatic changes during Heinrich events are driven by effective mechanisms, of particularly the effects of shifts in the latitudinal position of the Siberia High Pressure System.
Resumo:
46 hydropolyp species of 28 genera and 10 families were sampled during the "Meteor" passage 1964/65 (IIOE) through the Red Sea and its northern and southern exits and on the occasion of several ecological investigations of 29 selected coral reef sections of the central Red Sea and the Gulf of Aqaba. These collections comprise 128 single records of hydropolyp species. Three species and two genera each with one species are doubtful. 25 species, seven genera, one family and one subfamily, together from 49 records have not previously been found in the Red Sea and its exits. Including these newly reported species, the total list increases from 64 species and 112 records to 89 species and 240 single records and 51 additional ones. Scanning microscopical photos, made for the first time for the illustration of the hydropolyps, have been shown to be suitable for a better characterization and diagnosis of the species. Qualified results on the reasons for the horizontal distribution of the species known from the Red Sea area cannot be given because of the low number of samples sporadically distributed through the whole area. In contrast with this fact, the vertical spread of the species sampled seems primarily to be regulated by water exchange and light intensity. For example, four species of hydropolyps are excellent indicators of certain abiotic factors or combinations of them: Gymnangium eximium reacts extremely stenophote-photophobe-rheophil, Eudendrium ramosum moderately stenophote-photophobe-rheophobe, Lytocarpus philippinus moderately stenophote-photophil-rheophil, and Halocordyle disticha var. australis extremely stenophote-photophil but moderately rheophil. Other species have been found throughout all the light zones. Combined with the small size of their colonies their euryphotic behaviour does not allow their use as indicator species.
Resumo:
Fluctuations in the abundance of selected foraminiferal indicator species and diversity allowed the reconstruction of changes in deepwater oxygenation and monsoon-driven organic matter fluxes in the deep western Arabian Sea during the last 190 kyr. Times of maximum surface production coincide with periods of intensified SW monsoon as shown by the abundance of Globigerina bulloides and enhanced carbonate corrosion. Benthic ecosystem variability in the deep Arabian Sea is not exclusively driven by variations in monsoonal upwelling and related organic matter supply to the seafloor but also by changes in deepwater ventilation. Deepening of the base of the oxygen minimum zone (OMZ) below 1800 m water depth is strongly coherent on the precessional band but lags proxies of SW monsoon strength by 4 to 6 kyr. The "out-of-phase" relationship between OMZ deepening and maximum SW monsoon strength is explained by temporal changes in the advection of oxygen-rich deepwater masses of North Atlantic and Antarctic origin. This process affected the remineralization and burial efficiency of organic matter in the deep Arabian Sea, resulting in the observed phase lag between maximum monsoon strength and organic carbon preservation.
Resumo:
Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.
Resumo:
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.
Resumo:
Two sites in the Labrador Sea and one site in Baffin Bay were drilled during Leg 105. Radiolarians were recovered at all three sites, although at Site 645 (Baffin Bay), radiolarians were present in useful numbers only in the mudline sample. Radiolarians of late Neogene age were recovered at Site 646 south of Greenland, while early Oligocene and early Miocene radiolarians were recovered from the Labrador Sea at Site 647. In Site 646, radiolarian and other coarse-fraction abundances vary dramatically from sample to sample and may reflect deep-water depositional processes as well as changes in surface-water conditions. Site 647 siliceous microfossils reach their peak abundance and preservation in Core 105-647A-25R and decline gradually upward into the lower Miocene (Cores 105-647A-13R and -14R). Siliceous microfossil abundances in counts of the > 38-µm Carbonate-free coarse fraction from the siliceous interval are correlated to each other, but not to the abundance of nonbiogenic coarse-fraction components. Radiolarian abundances in specimens per gram (but not diatom abundances) are correlated to bulk opal concentration and to the organic carbon content of the sediment. The abundance of radiolarians and other siliceous microfossils within the lower Oligocene to lower Miocene is interpreted as reflecting changes in surface-water productivity. With only a few exceptions, no stratigraphic indicator species were seen in samples from either Site 646 or Site 647. The absence of both tropical/subtropical and Norwegian-Greenland Sea stratigraphic forms is due to the dominance of subarctic North Atlantic taxa in Leg 105 assemblages. The early Oligocene and early Miocene assemblages recovered at Site 647 are of particular interest, as very little material of these ages has previously been recovered from the subarctic North Atlantic region, and virtually no descriptive work has been conducted on the more endemic components of the radiolarian assemblages from these time intervals. Thus, this report concentrates on providing, at least in part, the first comprehensive documentation of early Oligocene and early Miocene radiolarians from the subarctic North Atlantic, with emphasis on basic descriptions, measurements, and photographic documentation. However, synonymic work and formal designation of new species names has been deferred until additional material from other regions can be examined. The sole exception is the emendation of Theocalyptra tetracantha Bjorklund and Kellogg 1972 to Cycladophora tetracantha n. comb.
Resumo:
The results of an investigation of tintinnids from the western Arabian Sea are described. A total of 134 closing-net samples was obtained from 22 stations of the German "Meteor" expedition 1964/1965. Distribution charts of the dominant species of tintinnids from the study area are presented as well as a list of the world-wide distribution of these species as derived from the literature. Tintinnids were most abundant in the surface waters. The layer from 0 - 25 m yielded a maximum 94.3% and a minimum of 61.3% of the tintinnids present from 0 - 175 m; the mean was 80%. There was no significant difference in the vertical distribution between day and night stations nor was there any indication of the influence of the thermocline upon vertical distribution of tintinnids. TS-diagrams show different water types in the western Arabian Sea. Temperatur-salinity-tintinnid -diagrams indicate regional patterns in the distribution of various species of tintinnids. Some tintinnids can be used as indicator species: Climacocylis scalaria, Parundella lohmanni and Amphorella amphora were typical for the Somali Current whereas Rhabdonella apophysata and Branditella palliata indicated the presence of East African Coastal Current water. The concentration of tintinnids in the upper 25 m raged between 4,800 and 39,300 individuals/m**3 (mean 19,000/m**3). Plasma volume of tintinnids was calculated to permit comparison of different links in the food chain. There was a mean of 51 mm**3/m**2 in the upper layer, equivalent to a concentration of 2 mm**3/m**3. Carbon values were computed from the plasma volume of tintinnids, phytoplankton and larger zooplankton. The ratio of phytoplankton plus microzooplankton carbon to large zooplankton carbon was 1 : 0.8 in the Somali Current, 1 : 0.4 in the East African Coastal Current and 1 : 1.2 in the mixing zone of these current systems. Tintinnids are one of the first links in the food chain. It is very likely that a part of the organic detritus and of the nanoplankton is transfered to large herbivores or omnivores via tintinnids and other protozoans. This mechanism might be especially effective during seasons when large phytoplankters are not available in the ocean.
Resumo:
A high-resolution sedimentary sequence recovered from the Tagus prodelta has been studied with the objective to reconstruct multi-decadal to centennial-scale climate variability on the western Iberian Margin and to discuss the observations in a wider oceanographic and climatic context. Between ca. 100 BC and AD 400 the foraminiferal fauna and high abundance of Globorotalia inflata indicate advection of subtropical waters via the Azores Current and the winter-time warm Portugal Coastal Current. Between ca. AD 400 and 1350, encompassing the Medieval Climate Anomaly (MCA), enhanced upwelling is indicated by the planktonic foraminiferal fauna, in particular by the high abundance of upwelling indicator species Globigerina bulloides. Relatively light d18O values and high sea surface temperature (SST) (reconstructed from foraminiferal assemblages) point to upwelling of subtropical Eastern North Atlantic Central Water. Between ca. AD 1350 and 1750, i.e. most of the Little Ice Age, relatively heavy d18O values and low reconstructed SST, as well as high abundances of Neogloboquadrina incompta, indicate the advection of cold subpolar waters to the area and a southward deflection of the subpolar front in the North Atlantic, as well as changes in the mode of the North Atlantic Oscillation. In addition, the assemblage composition together with the other proxy data reveals less upwelling and stronger river input than during the MCA. Stronger Azores Current influence on the Iberian Margin and strong anthropogenic effect on the climate after AD 1750 is indicated by the foraminiferal fauna. The foraminiferal assemblage shows a significant change in surface water conditions at ca. AD 1900, including enhanced river runoff, a rapid increase in temperature and increased influence of the Azores Current. The Tagus record displays a high degree of similarity to other North Atlantic records, indicating that the site is influenced by atmospheric-oceanic processes operating throughout the North Atlantic, as well as by local changes.
Resumo:
The injection of gas into sub-seabed aquifers may lead to the displacement of hypoxic and hypersaline fluids (reservoir formation water) major environmental risk. To investigate this risk, the impact of formation water release on the macrofaunal community in a mesocosm experiment at Solbergstrand was conducted. 20 boxcores were exposed to 4 treatments (high salinity, hypoxic, mixed and tidal) during two weeks. The abundance of macrofauna was quantified for each treatment and richness, eveness and biodiversity indices calculated. The data are reported in this dataset.