975 resultados para Planar Arrays
Resumo:
This paper presents a simple and fast solution to the problem of finding the time variations of the forces that keep the object equilibrium when a finger is removed from a three contact point grasp or a finger is added to a two contact point grasp, assuming the existence of an external perturbation force (that can be the object weight itself). The procedure returns force set points for the control system of a manipulator device in a regrasping action. The approach was implemented and a numerical example is included in the paper to illustrate how it works.
Resumo:
Laajojen pintojen kuvaaminen rajoitetussa työskentelytilassa riittävällä kuvatarkkuudella voi olla vaikeaa. Kuvaaminen on suoritettava osissa ja osat koottava saumattomaksi kokonaisnäkymäksi eli mosaiikkikuvaksi. Kuvauslaitetta käsin siirtelevän käyttäjän on saatava välitöntä palautetta, jotta mosaiikkiin ei jäisi aukkoja ja työ olisi nopeaa. Työn tarkoituksena oli rakentaa pieni, kannettava ja tarkka kuvauslaite paperi- ja painoteollisuuden tarpeisiin sekä kehittää palautteen antamiseen menetelmä, joka koostaaja esittää karkeaa mosaiikkikuvaa tosiajassa. Työssä rakennettiin kaksi kuvauslaitetta: ensimmäinen kuluttajille ja toinen teollisuuteen tarkoitetuista osista. Kuvamateriaali käsiteltiin tavallisella pöytätietokoneella. Videokuvien välinen liike laskettiin yksinkertaisella seurantamenetelmällä ja mosaiikkikuvaa koottiin kameroiden kuvanopeudella. Laskennallista valaistuksenkorjausta tutkittiin ja kehitetty menetelmä otettiin käyttöön. Ensimmäisessä kuvauslaitteessa on ongelmia valaistuksen ja linssivääristymien kanssa tuottaen huonolaatuisia mosaiikkikuvia. Toisessa kuvauslaitteessa nämä ongelmat on korjattu. Seurantamenetelmä toimii hyvin ottaen huomioon sen yksinkertaisuuden ja siihen ehdotetaan monia parannuksia. Työn tulokset osoittavat, että tosiaikainen mosaiikkikuvan koostaminen megapikselin kuvamateriaalista on mahdollista kuluttajille tarkoitetulla tietokonelaitteistolla.
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Resumo:
Kolmiulotteisten kappaleiden rekonstruktio on yksi konenäön haastavimmista ongelmista, koska kappaleiden kolmiulotteisia etäisyyksiä ei voida selvittää yhdestä kaksiulotteisesta kuvasta. Ongelma voidaan ratkaista stereonäön avulla, jossa näkymän kolmiulotteinen rakenne päätellään usean kuvan perusteella. Tämä lähestymistapa mahdollistaa kuitenkin vain rekonstruktion niille kappaleiden osille, jotka näkyvät vähintään kahdessa kuvassa. Piilossa olevien osien rekonstruktio ei ole mahdollista pelkästään stereonäön avulla. Tässä työssä on kehitetty uusi menetelmä osittain piilossa olevien kolmiulotteisten tasomaisten kappaleiden rekonstruktioon. Menetelmän avulla voidaan selvittää hyvällä tarkkuudella tasomaisista pinnoista koostuvan kappaleen muoto ja paikka käyttäen kahta kuvaa kappaleesta. Menetelmä perustuu epipolaarigeometriaan, jonka avulla selvitetään molemmissa kuvissa näkyvät kappaleiden osat. Osittain piilossa olevien piirteiden rekonstruointi suoritetaan käyttämäen stereonäköä sekä tietoa kappaleen rakenteesta. Esitettyä ratkaisua voitaisiin käyttää esimerkiksi kolmiulotteisten kappaleiden visualisointiin, robotin navigointiin tai esineentunnistukseen.
Resumo:
Colesteatomas são lesões císticas congênitas ou adquiridas que acometem as orelhas e que podem apresentar padrões típicos aos estudos de tomografia computadorizada, em função de suas características expansivas e tendência a promover erosão óssea. Entretanto, particularmente nos casos de resíduo ou recorrência pós-cirúrgica, a distinção entre colesteatoma e tecido inflamatório pode ser bastante difícil e, não raro, impossível com base somente nos achados tomográficos. A avaliação por ressonância magnética pode ser útil, particularmente neste contexto, uma vez que as sequências pós-contraste obtidas tardiamente e a difusão podem demonstrar padrões distintos nestas duas situações. Os artefatos condicionados pela interface ar/osso na região das mastoides podem limitar bastante a utilização da sequência de difusão echo-planar. A sequência de difusão sem echo-planar é uma alternativa na solução deste problema por estar menos sujeita a este tipo de artefato, fornecendo ainda imagens com maior resolução espacial e com espessuras de corte mais finas, as quais permitem a detecção de colesteatomas de pequenas dimensões.
Resumo:
The extensional theory of arrays is one of the most important ones for applications of SAT Modulo Theories (SMT) to hardware and software verification. Here we present a new T-solver for arrays in the context of the DPLL(T) approach to SMT. The main characteristics of our solver are: (i) no translation of writes into reads is needed, (ii) there is no axiom instantiation, and (iii) the T-solver interacts with the Boolean engine by asking to split on equality literals between indices. As far as we know, this is the first accurate description of an array solver integrated in a state-of-the-art SMT solver and, unlike most state-of-the-art solvers, it is not based on a lazy instantiation of the array axioms. Moreover, it is very competitive in practice, specially on problems that require heavy reasoning on array literals
Resumo:
The different conformations of porphyrin rings are strongly related with the electronic configurations of the metallic center in the ferriheme coordination compounds and heme proteins. The usual electronic configuration, (d xy)²(d xz,d yz )³ presents a planar conformation of the porphyrin ring and the less common electronic configuration (d xz,d yz)4(d xy )¹ occurs in the case of a strongly ruffled ring. These states are responsible for distinct chemical and spectroscopic properties of the porphyrin systems. The importance of the ring conformations, their characteristics, implications and applications are discussed.
Resumo:
Os autores estudaram o comportamento cromatográfico de preparações farmacêuticas comerciais contendo o íon Fe (II). Utilizando celulose microcristalina/Propanol: ácido clorídrico 4 N: ácido acético concentrado: ácido nítrico concentrado: clorofórmio (40: 5: 5: 10: 10), como sistema cromatográfico e alizarina como reagente de detecção, Fe (II), Mn (II), Mg (II), Cu (II), Zn (II) e Ca (II) foram separados e identificados pela Cromatografia Planar. O Fe (II) foi determinado pela reação com a ortofenantrolina, resultando em solução adequada para quantificação colorimétrica.
Resumo:
Billings and Guarapiranga Reservoirs were deeply affected by environmental disturbances, which more evident consequence are the cyanobacterial blooms. Microcystins are the most common cyanotoxin in freshwaters and more than 70 types are known. Different methods for microcystins analysis in water can be used, among which ELISA and HPLC are the most frequently employed. However, less sophisticated and more economic methods can also be used. This is the case of planar chromatography (thin-layer chromatography) method previously used in cyanotoxins purification but gradually replaced by others. Posterior optimization of the microcystin chromatography conditions and because of its simplicity, rapidity, efficiency and low cost, this method is again considered an option for the analysis of microcystins and nodularins. Considering the importance of Billings and Guarapiranga Reservoirs for drinking water supplies and the few scientific data about cyanobacteria and cyanotoxins in these water bodies, the aims of this work are to analyze the biodiversity of cyanobacteria in the Billings and Guarapiranga Reservoirs and the detection of dissolved microcystins in the water. It was possible to identify 17 species of cyanobacteria, 9 of them being potentially toxic. In Billings Reservoir Microcystis aeruginosa (Kützing) Kützing and Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju are the most common species, while in Guarapiranga Reservoir only M. aeruginosa was considered as a common species. Microcystins were detected in all Billings Reservoir samples and in only one sample from Guarapiranga Reservoir.
Resumo:
Paper-based analytical technologies enable quantitative and rapid analysis of analytes from various application areas including healthcare, environmental monitoring and food safety. Because paper is a planar, flexible and light weight substrate, the devices can be transported and disposed easily. Diagnostic devices are especially valuable in resourcelimited environments where diagnosis as well as monitoring of therapy can be made even without electricity by using e.g. colorimetric assays. On the other hand, platforms including printed electrodes can be coupled with hand-held readers. They enable electrochemical detection with improved reliability, sensitivity and selectivity compared with colorimetric assays. In this thesis, different roll-to-roll compatible printing technologies were utilized for the fabrication of low-cost paper-based sensor platforms. The platforms intended for colorimetric assays and microfluidics were fabricated by patterning the paper substrates with hydrophobic vinyl substituted polydimethylsiloxane (PDMS) -based ink. Depending on the barrier properties of the substrate, the ink either penetrates into the paper structure creating e.g. microfluidic channel structures or remains on the surface creating a 2D analog of a microplate. The printed PDMS can be cured by a roll-ro-roll compatible infrared (IR) sintering method. The performance of these platforms was studied by printing glucose oxidase-based ink on the PDMS-free reaction areas. The subsequent application of the glucose analyte changed the colour of the white reaction area to purple with the colour density and intensity depending on the concentration of the glucose solution. Printed electrochemical cell platforms were fabricated on paper substrates with appropriate barrier properties by inkjet-printing metal nanoparticle based inks and by IR sintering them into conducting electrodes. Printed PDMS arrays were used for directing the liquid analyte onto the predetermined spots on the electrodes. Various electrochemical measurements were carried out both with the bare electrodes and electrodes functionalized with e.g. self assembled monolayers. Electrochemical glucose sensor was selected as a proof-of-concept device to demonstrate the potential of the printed electronic platforms.
Resumo:
The mechanical and hygroscopic properties of paper and board are factors affecting the whole lifecycle of a product, including paper/board quality, production, converting, and material and energy savings. The progress of shrinkage profiles, loose edges of web, baggy web causing wrinkling and misregistration in printing are examples of factors affecting runnability and end product quality in the drying section and converting processes, where paper or board is treated as a moving web. The structural properties and internal stresses or plastic strain differences built up during production also cause the end-product defects related to distortion of the shape of the product such as sheet or box. The objective of this work was to construct a model capable of capturing the characteristic behavior of hygroscopic orthotropic material under moisture change, during different external in-plane stretch or stress conditions. Two independent experimental models were constructed: the elasto-plastic material model and the hygroexpansivity-shrinkage model. Both describe the structural properties of the sheet with a fiber orientation probability distribution, and both are functions of the dry solids content and fiber orientation anisotropy index. The anisotropy index, introduced in this work, simplifies the procedure of determining the constitutive parameters of the material model and the hygroexpansion coefficients in different in-plane directions of the orthotropic sheet. The mathematically consistent elasto-plastic material model and the dry solids content dependent hygroexpansivity have been constructed over the entire range from wet to dry. The presented elastoplastic and hygroexpansivity-shrinkage models can be used in an analytical approach to estimate the plastic strain and shrinkage in simple one-dimensional cases. For studies of the combined and more complicated effects of hygro-elasto-plastic behavior, both models were implemented in a finite element program for a numerical solution. The finite element approach also offered possibilities for studying different structural variations of orthotropic planar material, as well as local buckling behavior and internal stress situations of the sheet or web generated by local strain differences. A comparison of the simulation examples presented in this work to results published earlier confirms that the hygro-elasto-plastic model provides at least qualitatively reasonable estimates. The application potential of the hygro-elasto-plastic model is versatile, including several phenomena and defects appearing in the drying, converting and end-use conditions of the paper or board webs and products, or in other corresponding complex planar materials.
Resumo:
Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.
Resumo:
The conjecture claiming that every planar graph is acyclic 5-choosable[Borodin et al., 2002] has been verified for several restricted classes of planargraphs. Recently, O. V. Borodin and A. O. Ivanova, [Journal of Graph Theory,68(2), October 2011, 169-176], have shown that a planar graph is acyclically 5-choosable if it does not contain an i-cycle adjacent to a j-cycle, where 3<=j<=5 if i=3 and 4<=j<=6 if i=4. We improve the above mentioned result and prove that every planar graph without an i-cycle adjacent to a j-cycle with3<=j<=5 if i=3 and 4<=j<=5 if i=4 is acyclically 5-choosable.
Resumo:
In this work, we consider the properties of planar topological defects in unconventional superconductors. Specifically, we calculate microscopically the interaction energy of domain walls separating degenerate ground states in a chiral p-wave fermionic superfluid. The interaction is mediated by the quasiparticles experiencing Andreev scattering at the domain walls. As a by-product, we derive a useful general expression for the free energy of an arbitrary nonuniform texture of the order parameter in terms of the quasiparticle scattering matrix. The thesis is structured as follows. We begin with a historical review of the theories of superconductivity (Sec. 1.1), which led the way to the celebrated Bardeen-Cooper- Schrieffer (BCS) theory (Sec. 1.3). Then we proceed to the treatment of superconductors with so-called "unconventional pairing" in Sec. 1.4, and in Sec. 1.5 we introduce the specific case of chiral p-wave superconductivity. After introducing in Sec. 2 the domain wall (DW) model that will be considered throughout the work, we derive the Bogoliubov-de Gennes (BdG) equations in Sec. 3.1, which determine the quasiparticle excitation spectrum for a nonuniform superconductor. In this work, we use the semiclassical (Andreev) approximation, and solve the Andreev equations (which are a particular case of the BdG equations) in Sec. 4 to determine the quasiparticle spectrum for both the single- and two-DW textures. The Andreev equations are derived in Sec. 3.2, and the formal properties of the Andreev scattering coefficients are discussed in the following subsection. In Sec. 5, we use the transfer matrix method to relate the interaction energy of the DWs to the scattering matrix of the Bogoliubov quasiparticles. This facilitates the derivation of an analytical expression for the interaction energy between the two DWs in Sec. 5.3. Finally, to illustrate the general applicability our method, we apply it in Sec. 6 to the interaction between phase solitons in a two-band s-wave superconductor.