438 resultados para Pharyngeal swallowing
Resumo:
The microstructure of parrotfish pharyngeal teeth was examined using scanning electron microscopy to infer possible mechanical properties of the dentition with respect to their function. Parrotfish tooth enameloid is formed from fluorapatite crystals grouped into bundles. In the upper and lower pharyngeal jaw, the majority of the crystal bundles are orientated either perpendicularly or vertically to the enameloid surface. The only exception is in the trailing apical enameloid in which the majority of bundles are orientated perpendicularly or horizontally to the trailing surface. A distinct transition occurs through the middle of the apex between the leading and trailing enameloid in teeth of the lower pharyngeal jaw. This transition appears less distinct in the teeth of the upper pharyngeal jaw. Enameloid microstructure indicates that shear forces predominate at the apex of the teeth. In the remainder of the enameloid, the microstructure indicates that wear is predominant, and the shear forces are of less importance.
Resumo:
Morphology, occlusal surface topography, macrowear, and microwear features of parrotfish pharyngeal teeth were investigated to relate microstructural characteristics to the function of the pharyngeal mill using scanning electron microscopy of whole and sectioned pharyngeal jaws and teeth. Pharyngeal tooth migration is anterior in the lower jaw (fifth ceratobranchial) and posterior in the upper jaw (paired third pharyngobranchials), making the interaction of occlusal surfaces and wear-generating forces complex. The extent of wear can be used to define three regions through which teeth migrate: a region containing newly erupted teeth showing little or no wear; a midregion in which the apical enameloid is swiftly worn; and a region containing teeth with only basal enameloid remaining, which shows low to moderate wear. The shape of the occlusal surface alters as the teeth progress along the pharyngeal jaw, generating conditions that appear suited to the reduction of coral particles. It is likely that the interaction between these particles and algal cells during the process of the rendering of the former is responsible for the rupture of the latter, with the consequent liberation of cell contents from which parrotfish obtain their nutrients.
Resumo:
Human swallowing represents a complex highly coordinated sensorimotor function whose functional neuroanatomy remains incompletely understood. Specifically, previous studies have failed to delineate the temporo-spatial sequence of those cerebral loci active during the differing phases of swallowing. We therefore sought to define the temporal characteristics of cortical activity associated with human swallowing behaviour using a novel application of magnetoencephalography (MEG). In healthy volunteers (n = 8, aged 28-45), 151-channel whole cortex MEG was recorded during the conditions of oral water infusion, volitional wet swallowing (5 ml bolus), tongue thrust or rest. Each condition lasted for 5 s and was repeated 20 times. Synthetic aperture magnetometry (SAM) analysis was performed on each active epoch and compared to rest. Temporal sequencing of brain activations utilised time-frequency wavelet plots of regions selected using virtual electrodes. Following SAM analysis, water infusion preferentially activated the caudolateral sensorimotor cortex, whereas during volitional swallowing and tongue movement, the superior sensorimotor cortex was more strongly active. Time-frequency wavelet analysis indicated that sensory input from the tongue simultaneously activated caudolateral sensorimotor and primary gustatory cortex, which appeared to prime the superior sensory and motor cortical areas, involved in the volitional phase of swallowing. Our data support the existence of a temporal synchrony across the whole cortical swallowing network, with sensory input from the tongue being critical. Thus, the ability to non-invasively image this network, with intra-individual and high temporal resolution, provides new insights into the brain processing of human swallowing. © 2004 Elsevier Inc. All rights reserved.
Resumo:
Background/Aims: Positron emission tomography has been applied to study cortical activation during human swallowing, but employs radio-isotopes precluding repeated experiments and has to be performed supine, making the task of swallowing difficult. Here we now describe Synthetic Aperture Magnetometry (SAM) as a novel method of localising and imaging the brain's neuronal activity from magnetoencephalographic (MEG) signals to study the cortical processing of human volitional swallowing in the more physiological prone position. Methods: In 3 healthy male volunteers (age 28–36), 151-channel whole cortex MEG (Omega-151, CTF Systems Inc.) was recorded whilst seated during the conditions of repeated volitional wet swallowing (5mls boluses at 0.2Hz) or rest. SAM analysis was then performed using varying spatial filters (5–60Hz) before co-registration with individual MRI brain images. Activation areas were then identified using standard sterotactic space neuro-anatomical maps. In one subject repeat studies were performed to confirm the initial study findings. Results: In all subjects, cortical activation maps for swallowing could be generated using SAM, the strongest activations being seen with 10–20Hz filter settings. The main cortical activations associated with swallowing were in: sensorimotor cortex (BA 3,4), insular cortex and lateral premotor cortex (BA 6,8). Of relevance, each cortical region displayed consistent inter-hemispheric asymmetry, to one or other hemisphere, this being different for each region and for each subject. Intra-subject comparisons of activation localisation and asymmetry showed impressive reproducibility. Conclusion: SAM analysis using MEG is an accurate, repeatable, and reproducible method for studying the brain processing of human swallowing in a more physiological manner and provides novel opportunities for future studies of the brain-gut axis in health and disease.
Resumo:
Peer reviewed
Resumo:
To evaluate the sleep bruxism, malocclusions, orofacial dysfunctions and salivary levels of cortisol and alpha-amylase in asthmatic children. 108 7-9-yr-old children were selected from Policlinic Santa Teresinha Doutor Antonio Haddad Dib (asthmatics, n=53) and from public schools (controls, n=55), Piracicaba, SP, Brazil. Sleep bruxism diagnosis was confirmed by parental report of grinding sounds and the presence of shiny and polish facets on incisors and/or first permanent molars. The index of orthodontic treatment need was used for occlusion evaluation. Orofacial dysfunctions were evaluated using the nordic orofacial test-screening (NOT-S). Salivary cortisol and alpha-amylase were expressed as awakening response (AR), calculated as the difference between levels immediately after awakening and 30min after waking, and diurnal decline (DD), calculated as the difference between levels at 30min after waking and at bedtime. Data were analyzed using Shapiro-Wilk/Kolmogorov-Smirnov, Chi-square, unpaired t test/Mann-Whitney and paired t/Wilcoxon tests. Sleep bruxism was more prevalent in children with asthma than controls (47.2% vs. 27.3%, p<0.05). Asthmatics had higher scores of NOT-S total and interview (p<0.05). Dysfunctions on sensory function and chewing and swallowing were more frequent in asthmatics (p<0.05). Salivary cortisol AR on weekend was significantly higher for asthmatics (p<0.05). Salivary cortisol DD was significantly higher on weekday than weekend for controls (p<0.05). There were no significant differences in alpha-amylase values in and between groups. The presence of asthma in children was associated with sleep bruxism, negative perception of sensory, chewing and swallowing functions, and higher concentrations of salivary cortisol on weekend.
Resumo:
OBJECTIVE: To verify the effectiveness of the support group in the identification of family variables linked to epilepsy. METHOD: Pre-test were applied to parents of 21 children with benign epilepsy of childhood recently diagnosed, from 5 to 15 years, who participated in the groups at HC/Unicamp. There was a presentation of an educational video, discussion and application of the post-test 1. After six months, the post-test 2 was applied. RESULTS: The beliefs were: fear of swallowing the tongue during the seizures (76.19%) and of a future mental disease (66.67%). Facing the epilepsy, fear and sadness appeared. 76.19% of the parents presented overprotection and 90.48%, expected a new seizure. In the post-test 1, the parents affirmed that the information offered had modified the beliefs. In the post-test 2, 80.95% didn't report great doubts about epilepsy and 90.48% considered their relationship with their children better. CONCLUSIONS: The demystification of beliefs supplied from the groups influenced the family positively, prevented behavior alterations and guaranteed effective care in the attendance to the child with epilepsy.
Resumo:
TEMA: o desenvolvimento do controle motor oral depende em parte das experiências sensoriais e motoras. OBJETIVO: analisar a relação entre a duração do aleitamento natural, artificial e da sucção e destas com o desempenho motor orofacial. MÉTODO: cento e setenta e seis crianças, de 6 a 12 anos de idade, passaram por avaliação miofuncional orofacial, empregando o protocolo com escores, e os responsáveis foram entrevistados a respeito do aleitamento e hábitos de sucção de suas crianças. As correlações foram calculadas pelo teste de Spearman. RESULTADOS: na amostra estudada, a média de duração do aleitamento natural foi de 10,30 meses (variando de zero a 60 meses), do aleitamento artificial 44,12 (zero a 122 meses) e dos hábitos de sucção de 39,32 meses (zero a 144 meses). Houve correlação negativa da duração do aleitamento natural com a duração do aleitamento artificial e a duração dos hábitos de sucção (p < 0,001). A maior duração do aleitamento artificial correspondeu à maior duração dos hábitos de sucção, apresentando, assim, correlação positiva (p < 0,001). A duração do aleitamento natural foi correlacionada positivamente com a mobilidade orofacial (p = 0,05). Houve correlação negativa da duração do aleitamento artificial e da duração dos hábitos de sucção com, respectivamente, o desempenho na mastigação e na deglutição, bem como da duração de ambos os tipos de sucção com a prova de diadococinesia (p = 0,05). CONCLUSÃO: a duração do aleitamento natural mostrou efeito positivo sobre a mobilidade das estruturas orofaciais. Os efeitos deletérios da duração dos hábitos de sucção no controle motor orofacial foram confirmados.
Resumo:
TEMA: ferimentos causados por projéteis de arma de fogo apresentam alta incidência na região da cabeça e face. A articulação temporomandibular pode estar envolvida, além de estruturas anatômicas importantes como o nervo facial, necessitando de equipe multidisciplinar para efetuar tratamento adequado. PROCEDIMENTOS: apresentação de caso clínico de fratura condilar cominutiva causada por projétil de arma de fogo tratado de forma não-cirúrgica associado à terapia miofuncional orofacial. Paciente encaminhado para avaliação e procedimentos fonoaudiológicos após conduta da equipe de cirurgia bucomaxilofacial, sem remoção do projétil, alojado superficialmente, próximo da origem do músculo esternocleidomastóideo à direita, com fratura condilar cominutiva e lesão do nervo facial. Foram aspectos observados em avaliação: mordida aberta anterior, importante redução da amplitude dos movimentos mandibulares com desvios para o lado acometido, ausência de lateralidade contralateral, dor muscular, paralisia e parestesia em terço médio e superior da hemiface direita. Realizadas sessões de terapia miofuncional seguindo protocolo específico para traumas de face constando de: drenagem de edema; manipulações na musculatura levantadora da mandíbula ipsilateral; ampliação e correção dos movimentos mandibulares; procedimentos específicos referentes à paralisia facial e reorganização funcional direcionada. RESULTADOS: após oito semanas de terapia os resultados obtidos mostram restabelecimento de amplitude e da simetria dos movimentos mandibulares, reorganização da mastigação, adequação da deglutição e fala, remissão da sintomatologia dolorosa e remissão da paralisia do terço médio. CONCLUSÃO: o tratamento conservador da fratura por meio da terapia miofuncional orofacial resultou na reabilitação funcional da mandíbula e face dirigindo os movimentos e estimulando a adequação das funções estomatognáticas.