922 resultados para Peritoneal Cavity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural IgM (nIgM) is constitutively present in the serum, where it aids in the early control of viral and bacterial expansions. nIgM also plays a significant role in the prevention of autoimmune disease by promoting the clearance of cellular debris. However, the cells that maintain high titers of nIgM in the circulation had not yet been identified. Several studies have linked serum nIgM with the presence of fetal-lineage B cells, and others have detected IgM secretion directly by B1a cells in various tissues. Nevertheless, a substantial contribution of undifferentiated B1 cells to nIgM titers is doubtful, as the ability to produce large quantities of antibody (Ab) is a function of the phenotype and morphology of differentiated plasma cells (PCs). No direct evidence exists to support the claim that a B1-cell population directly produces the bulk of circulating nIgM. The source of nIgM thus remained uncertain and unstudied.

In the first part of this study, I identified the primary source of nIgM. Using enzyme-linked immunosorbent spot (ELISPOT) assay, I determined that the majority of IgM Ab-secreting cells (ASCs) in naïve mice reside in the bone marrow (BM). Flow cytometric analysis of BM cells stained for intracellular IgM revealed that nIgM ASCs express IgM and the PC marker CD138 on their surface, but not the B1a cell marker CD5. By spinning these cells onto slides and staining them, following isolation by fluorescence-activated cell sorting (FACS), I found that they exhibit the typical morphological characteristics of terminally differentiated PCs. Transfer experiments demonstrated that BM nIgM PCs arise from a progenitor in the peritoneal cavity (PerC), but not isolated PerC B1a, B1b, or B2 cells. Immunoglobulin (Ig) gene sequence analysis and examination of B1-8i mice, which carry an Ig knockin that prohibits fetal B-cell development, indicated that nIgM PCs differentiate from fetal-lineage B cells. BrdU uptake experiments showed that the nIgM ASC compartment contains a substantial fraction of long-lived plasma cells (LLPCs). Finally, I demonstrated that nIgM PCs occupy a survival niche distinct from that used by IgG PCs.

In the second part of this dissertation, I characterized the unique survival niche of nIgM LLPCs, which maintain constitutive high titers of nIgM in the serum. By using genetically deficient or Ab-depleted mice, I found that neither T cells, type 2 innate lymphoid cells, nor mast cells, the three major hematopoietic producers of IL-5, were required for nIgM PC survival in the BM. However, IgM PCs associate strongly with IL-5-expressing BM stromal cells, which support their survival in vitro when stimulated. In vivo neutralization of IL-5 revealed that, like individual survival factors for IgG PCs, IL-5 is not the sole supporter of IgM PCs, but is likely one of several redundant molecules that together ensure uninterrupted signaling. Thus, the long-lived nIgM PC niche is not composed of hematopoietic sources of IL-5, but a stromal cell microenvironment that provides multiple redundant survival signals.

In the final part of my study, I identified and characterized the precursor of nIgM PCs, which I found in the first project to be resident in the PerC, but not a B1a, B1b, or B2 cell. By transferring PerC cells sorted based on expression of CD19, CD5, and CD11b, I found that only the CD19+CD5+CD11b- population contained cells capable of differentiating into nIgM PCs. Transfer of decreasing numbers of unfractionated PerC cells into Rag1 knockouts revealed an order-of-magnitude drop in the rate of serum IgM reconstitution between stochastically sampled pools of 106 and 3x105 PerC cells, suggesting that the CD19+CD5+CD11b- compartment comprises two cell types, and that interaction between the two necessary for nIgM-PC differentiation. By transferring neonatal liver, I determined that the early hematopoietic environment is required for nIgM PC precursors to develop. Using mice carrying a mutation that disturbs cKit expression, I also found that cKit appears to be required at a critical point near birth for the proper development of nIgM PC precursors.

The collective results of these studies demonstrate that nIgM is the product of BM-resident PCs, which differentiate from a PerC B cell precursor distinct from B1a cells, and survive long-term in a unique survival niche created by stromal cells. My work creates a new paradigm by which to understand nIgM, B1 cell, and PC biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

B cell abnormalities contribute to the development and progress of autoimmune disease. Traditionally, the role of B cells in autoimmune disease was thought to be predominantly limited to the production of autoantibodies. Nevertheless, in addition to autoantibody production, B cells have other functions potentially relevant to autoimmunity. Such functions include antigen presentation to and activation of T cells, expression of costimulatory molecules and cytokine production. Recently, the ability of B cells to negatively regulate cellular immune responses and inflammation has been described and the concept of “regulatory B cells” has emerged. A variety of cytokines produced by regulatory B cell subsets have been reported with interleukin-10 (IL-10) being the most studied. IL-10-producing regulatory B cells predominantly localize within a rare CD1dhiCD5+ B cell subset in mice and the CD24hiCD27+ B cell subset in adult humans. This specific IL-10-producing subset of regulatory B cells have been named “B10 cells” to highlight that the regulatory function of these rare B cells is primarily mediated by IL-10, and to distinguish them from other regulatory B cell subsets that regulate immune responses through different mechanisms. B10 cells have been studies in a variety of animal models with autoimmune disease and clinical settings of human autoimmunity. There are many unsolved questions related to B10 cells including their surface phenotype, their origin and development in vivo, and their role in autoimmunity.

In Chapter 3 of this dissertation, the role of the B cell receptor (BCR) in B10 cell development is highlighted. First, the BCR repertoire of mouse peritoneal cavity B10 cells is examined by single cell sequencing; peritoneal cavity B10 cells have clonally diverse germline BCRs that are predominantly unmutated. Second, mouse B10 cells are shown to have higher frequencies of λ+ BCRs compared to non-B10 cells which may indicate the involvement of BCR light chain editing early in the process of B10 cell development in vivo. Third, human peripheral blood B10 cells are examined and are also found to express higher frequencies of λ chains compared to non-b10 cells. Therefore, B10 cell BCRs are clonally diverse and enriched for unmutated germline sequences and λ light chains.

In Chapter 4 of this dissertation, B10 cells are examined in the healthy developing human across the entire age range of infancy, childhood and adolescence, and in a large cohort of children with autoimmunity. The study of B10 cells in the developing human documents a massive transient expansion during middle childhood when up to 30% of blood B cells were competent to produce IL-10. The surface phenotype of pediatric B10 cells was variable and reflective of overall B cell development. B10 cells down-regulated CD4+ T cell interferon-gamma (IFN-γ) production through IL-10-dependent pathways and IFN-γ inhibited whereas interleukin-21 (IL-21) promoted B cell IL-10 competency in vitro. Children with autoimmunity had a contracted B10 cell compartment, along with increased IFN-γ and decreased IL-21 serum levels compared to age-matched healthy controls. The decreased B10 cell frequencies and numbers in children with autoimmunity may be partially explained by the differential regulation of B10 cell development by IFN-γ and IL-21 and alterations in serum cytokine levels. The age-related changes of the B10 cell compartment during normal human development provide new insights into immune tolerance mechanisms involved in inflammation and autoimmunity.

These studies collectively demonstrate that BCR signals are the most important early determinant of B10 cell development in vivo, that human B10 cells are not a surface phenotype defined developmental B cell subset but a functionally defined regulatory B cell subset that regulates CD4+ T IFN-γ production through IL-10-dependent pathways and that human B10 cell development can be regulated by soluble factors in vivo such as the cytokine milieu. The findings of these studies provide new insights into immune tolerance mechanisms involved in human autoimmunity and the potent effects of IL-21 on human B cell IL-10 competence in vitro open new horizons in the development of autologous B10 cell-based therapies as an approach to treat human autoimmune disease in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

B cells mediate immune responses via the secretion of antibody and interactions with other immune cell populations through antigen presentation, costimulation, and cytokine secretion. Although B cells are primarily believed to promote immune responses using the mechanisms described above, some unique regulatory B cell populations that negatively influence inflammation have also been described. Among these is a rare interleukin (IL)-10-producing B lymphocyte subset termed “B10 cells.” B cell-derived IL-10 can inhibit various arms of the immune system, including polarization of Th1/Th2 cell subsets, antigen presentation and cytokine production by monocytes and macrophages, and activation of regulatory T cells. Further studies in numerous autoimmune and inflammatory models of disease have confirmed the ability of B10 cells to negatively regulate inflammation in an IL-10-dependent manner. Although IL-10 is indispensable to the effector functions of B10 cells, how this specialized B cell population is selected in vivo to produce IL-10 is unknown. Some studies have demonstrated a link between B cell receptor (BCR)-derived signals and the acquisition of IL-10 competence. Additionally, whether antigen-BCR interactions are required for B cell IL-10 production during homeostasis as well as active immune responses is a matter of debate. Therefore, the goal of this thesis is to determine the importance of antigen-driven signals during B10 cell development in vivo and during B10 cell-mediated immunosuppression.

Chapter 3 of the dissertation explored the BCR repertoire of spleen and peritoneal cavity B10 cells using single-cell sequencing to lay the foundation for studies to understand the full range of antigens that may be involved in B10 cell selection. In both the spleen and peritoneal cavity B10 cells studied, BCR gene utilization was diverse, and the expressed BCR transcripts were largely unmutated. Thus, B10 cells are likely capable of responding to a wide range of foreign and self-antigens in vivo.

Studies in Chapter 4 determined the predominant antigens that drive B cell IL-10 secretion during homeostasis. A novel in vitro B cell expansion system was used to isolate B cells actively expressing IL-10 in vivo and probe the reactivities of their secreted monoclonal antibodies. B10 cells were found to produce polyreactive antibodies that bound multiple self-antigens. Therefore, in the absence of overarching active immune responses, B cell IL-10 is secreted following interactions with self-antigens.

Chapter 5 of this dissertation investigated whether foreign antigens are capable of driving B10 cell expansion and effector activity during an active immune response. In a model of contact-induced hypersensitivity, in vitro B cell expansion was again used to isolate antigen-specific B10 clones, which were required for optimal immunosuppression.

The studies described in this dissertation shed light on the relative contributions of BCR-derived signals during B10 cell development and effector function. Furthermore, these investigations demonstrate that B10 cells respond to both foreign and self-antigens, which has important implications for the potential manipulation of B10 cells for human therapy. Therefore, B10 cells represent a polyreactive B cell population that provides antigen-specific regulation of immune responses via the production of IL-10.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’endométriose est une maladie gynécologique, touchant les femmes en âge de procréer. Cette pathologie est caractérisée par la présence de tissu endométrial ectopique, c’est-à-dire en dehors de la cavité utérine. Des dysfonctions du système immunitaire sont de plus en plus souvent suspectées comme étant un des éléments responsables de la pathogenèse de cette maladie. L’objectif général de ce projet a donc été d’étudier les mécanismes cellulaires de molécules pro-inflammatoires aux propriétés variées et à l’expression anormalement élevée dans cette pathologie, que sont MIF et les prostaglandines PGE2 et PGF2α, dans les anomalies inflammatoires et invasives en cause dans cette pathologie. La première partie de nos travaux a porté sur l’étude d’un modèle murin de l’endométriose déficient du gène MIF. Le nombre et le volume des lésions collectées à partir des souris déficientes pour le gène MIF sont significativement inférieurs à ceux mesurés dans des souris sauvages utilisées comme contrôle. L’analyse par PCR des cellules isolées des lésions de souris déficientes du gène MIF a révélé une expression réprimée des protéines d’adhésion, d’inflammation et d’angiogenèse. Ces données démontrent pour la première fois que le MIF agit directement sur la croissance et la progression de lésions d’endométriose in vivo. Une partie de nos travaux a porté sur les molécules nécessaires au métabolisme de PGE2 et PGF2α dans l’endomètre eutopique des femmes normales et l’endomètre eutopique et ectopique des femmes atteintes d’endométriose. Selon nos données, l’expression de certains de ces facteurs est perturbée durant cette maladie, ce qui peut avoir des effets délétères sur la physiologie de la procréation. La stimulation des cellules ectopiques par PGF2α entraîne une libération accrue de VEGF et CXCL-8, ceci via l’induction de COX-2 et des deux variants d’épissage du récepteur FP. De plus, la PKC joue un rôle dans ce phénomène, dépendamment et indépendamment de la PLC. Par son effet inducteur sur la libération de VEGF et CXCL-8, PGF2α pourrait favoriser l’aspect inflammatoire et le développement ectopique des lésions d’endométriose, notamment par des phénomènes d’angiogenèse et de prolifération cellulaire accrus. L’effet de PGF2α sur la libération de VEGF et CXCL-8 par les cellules endométriales ectopiques pourrait également expliquer les quantités élevées de ces cytokines dans le liquide péritonéal des femmes atteintes d’endométriose, un phénomène suspecté dans l’infertilité et les douleurs associées à cette maladie. Nos derniers résultats obtenus à partir du liquide péritonéal montrent un profil cytokinique en faveur de l’angiogenèse et la prolifération des lésions d’endométriose, avec une forte augmentation des facteurs suivants : EGF, FGF-2, IL-1α, MIP-1β, TGFα, PDGF-AA, PDGF-BB, MCP-3, sCD40L, Gro Pan, IL-17α, MDC et Rantes, confortant nos observations préalables redéfinissant la maladie comme étant d’origine angio-inflammatoire. L’endométriose et ses symptômes sont des phénomènes complexes ayant probablement plus qu’une seule origine. Parmi les nombreux facteurs à l’expression altérée dans l’endométriose, notre étude montre que MIF, PGE2 et PGF2α, ainsi qu’une pléthore de facteurs pro-angiogéniques pourraient être de ceux jouant un rôle dans l’infertilité et les douleurs reliées à cette maladie.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gastrointestinal system is commonly implicated in Systemic Lupus Erythematosus (SLE). Ascites, produced by several mechanisms has been reported as a systemic manifestation of lupus, but only rarely as an initial presentation of the disease. Its appearance is often insidious and without abdominal pain. Chylous ascites (such as chyle in the peritoneal cavity) has seldom been reported in SLE. We describe a case of chylous ascites in an SLE patient, reviewing the other published cases, its pathophysiology and its management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last years, heparin has become target of many studies related to inflammation due its ability of biding to proteins involved on immune response. Recently, it was demonstrated, at our laboratory, using a thIoglycollate-induced peritonitis model, heparin s capacity of reduce cellular influx into the peritoneal cavity, 3 hours after the inflammatory stimulus. Once neutrophilic infiltration is highest around 8 hours after the inflammatory stimulus, at the present work, using the same peritonitis model, it was assessed heparin s ability of keeping the interference on leukocyte infiltration, 8 hours after inflammation induction. Moreover, using cellular differential count, it was evaluated how the cellular populations involved in the inflammatory process would be affected by the treatment. Eight hours after the inflammatory stimulus, only heparin dosage of 1 μg/Kg was able to reduce the cellular influx to peritoneum, 62.8% of reduction when compared to positive control (p < 0.001). Furthermore, heparin dosage of 15 μg/Kg presented a pro-inflammatory effect in whole blood verified by the increase of 60.9% (p < 0.001) and 117.8% (p < 0.001) on neutrophils and monocytes proportion, respectively, when compared to positive control. In addition, this dosage also presented a neutrophilic proportion on peritoneal fluid 27.3% higher than positive control (p < 0.05). This duality between anti- and pro-inflammatory effects at different times corroborates studies that attribute a pleiotropic immunomodulator role to heparin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heparin, a sulfated polysaccharide, was the first compound used as an anticoagulant and antithrombotic agent. Due to their structural characteristics, also has great potential anti-inflammatory, though such use is limited in inflammation because of their marked effects on coagulation. The occurrence of heparin-like compounds that exhibit anticoagulant activity decreased in aquatic invertebrates, such as crab Goniopsis cruentata, sparked interest for the study of such compounds as anti-inflammatory drugs. Therefore, the objective of this study was to evaluate the potential modulator of heparin-like compound extracted from Goniopsis cruentata in inflammatory events, coagulation, and to evaluate some aspects of its structure. The heparin-type compound had a high degree of N-sulphation in its structure, being able to reduce leukocyte migration into the peritoneal cavity at lower doses compared to heparin and diclofenac sodium (anti-inflammatory commercial). Furthermore, it was also able to inhibit the production of nitric oxide and tumor necrosis factor alpha by activated macrophages, inhibited the activation of the enzyme neutrophil elastase in low concentrations and showed a lower anticoagulant effect in high doses as compared to porcine mucosal heparin. Because of these observations, the compound extracted from crab Goniopsis cruentata can be used as a structural model for future anti-inflammatory agents

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteinase-activated receptors (PAR) are widely recognized for their modulatory properties in inflammatory and immune responses; however, their direct role on phagocyte effector functions remains unknown. S100A9, a protein secreted during inflammatory responses, deactivates activated peritoneal macrophages, and its C-terminal portion inhibits spreading and phagocytosis of adherent peritoneal cells. Herein, the effect of PAR1 and PAR2 agonists was investigated on spreading and phagocytosis by adherent peritoneal cells, as well as the ability of murine C-terminal of S100A9 peptide (mS100A9p) to modulate this effect. Adherent peritoneal cells obtained from mouse abdominal cavity were incubated with PAR1 and PAR2 agonists and spreading and phagocytosis of Candida albicans particles were evaluated. PAR1 agonists increased both the spreading and the phagocytic activity, but PAR2 agonists only increased the spreading index. mS100A9p reverted both the increased spreading and phagocytosis induced by PAR1 agonists, but no interference in the increased spreading induced by PAR2 agonists was noticed. The shorter homologue peptide to the C-terminal of mS100A9p, corresponding to the H(92)-E(97) region, also reverted the increased spreading and phagocytosis induced by PAR1 agonists. These findings show that proteinase-activated receptors have an important role for spreading and phagocytosis of adherent peritoneal cells, and that the pepticle corresponding to the C-terminal of S100A9 protein is a remarkable candidate for use as a novel compound to modulate PAR1 function. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goals of this study were to evaluate techniques for collection of peritoneal fluid from calves, establish reference ranges for fibrinogen in peritoneal fluid during the 1st month of life, and determine if abomasal puncture would alter peritoneal fluid or hematologic variables. Twenty-two healthy Holstein calves underwent 3 peritoneal fluid collections on day 1, day 15, and day 30 of age. Fibrinogen concentration in peritoneal fluid was 0.20 g/dL and 0.10 g/dL (P < .05) for day 1 and day 30, respectively, and 0.10 at day 15 (P > .05) for calves without abomasal puncture. Plasma fibrinogen concentration was 0.60 g/dL and 0.70 g/dL (P < .05) for days 15 and 30, respectively, in calves without abomasal puncture. There were no significant differences (P <= .05) in peritoneal fluid and peripheral blood total protein and fibrinogen concentrations, specific gravity, total and differential cell count, or erythrocyte counts between calves with or without abomasal puncture. We concluded that the reference ranges established for fibrinogen and total protein concentration are important for accurate evaluation of peritoneal fluid in calves for further comparison with similar-aged animals with gastrointestinal-tract or abdominal-cavity disease. Additionally, accidental abomasal puncture does not alter values of fibrinogen, total protein, and nucleated cell Count in peritoneal fluid and does not cause apparent clinical abnormalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus is the main agent of infections during peritoneal dialysis (PD). The presence of S. aureus in the nasal cavity has been extensively studied and suggested as a risk factor of dialysis-related infections, whereas coagulase-negative Staphylococcus (CNS) species are frequently considered part of the normal human microbiota. The aim of this study was to identify Staphylococcus in the nasal cavity, pericatheter skin and peritoneal effluent from PD patients, as well as to evaluate the antimicrobial activity evolution in vitro. Thirty-two chronic PD patients were observed during 12 months and had nasal and pericatheter skin samples collected for culture. When peritonitis was detected, samples were also collected from the peritoneal effluent for culture. The activity of several antimicrobial drugs (penicillin G, oxacillin, cephalothin, ofloxacin, netilmicin and vancomycin) against different Staphylococcus species was measured by using the agar drug diffusion assay (Kirby-Bauer method). Staphylococcus was separated into S. aureus, S. epidermidis and other CNS species in order to determine the in vitro resistance level. S. epidermidis resistance to oxacillin progressively increased during the study period (p < 0.05). Resistance to ofloxacin was inexpressive, whereas resistance to netilmicin and vancomycin was not detected. of the oxacillin-resistant species (n = 74), 83% were S. epidermidis, 13% other CNS and 4% S. aureus (p < 0.05). Regarding multidrug resistant strains (n = 45), 82% were S. epidermidis, 13% other CNS, and 5% S. aureus (p < 0.05). This study shows the relevance of resistance to oxacillin and CNS multi-drug resistance, particularly concerning S. epidermidis, in PD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of Staphylococcus aureus in the nasal cavities and pericatheter skin of peritoneal dialysis patients put them at high risk of developing peritonitis. However, it is not clear whether the presence of coagulase-negative staphylococci (CNS) in the nasal passages and skin of patients is related to subsequent occurrence of peritoneal infection. The aim of the present study was to verify the relationship between endogenous sources of S. aureus and CNS and occurrence of peritonitis in patients undergoing peritoneal dialysis. Thirty-two patients on peritoneal hemodialysis were observed for 18 months. Staphylococcus species present in their nasal passage, pericatheter skin and peritoneal effluent were identified and compared based on drug susceptibility tests and dendrograms, which were drawn to better visualize the similarity among strains from extraperitoneal sites as well as their involvement in the causes of infection. Out of 288 Staphylococcus strains isolated, 155 (53.8%) were detected in the nasal cavity, 122 (42.4%) on the skin, and 11 (3.8%) in the peritoneal effluent of patients who developed peritonitis during the study. The most frequent Staphylococcus species were CNS (78.1%), compared with S. aureus (21.9%). Among CNS, S. epidermidis was predominant (64.4%), followed by S. warneri (15.1%), S. haemolyticus (10.7%), and other species (9.8%). Seven (64%) out of 11 cases of peritonitis analyzed presented similar strains. The same strain was isolated from different sites in two (66%) out of three S. aureus infection cases. In the six cases of S. epidermidis peritonitis, the species that caused infection was also found in the normal flora. From these, two cases (33%) presented highly similar strains and in three cases (50%), it was difficult to group strains as to similarity. Patients colonized with multidrug-resistant S. epidermidis strains were more predisposed to infection. Results demonstrated that an endogenous source of S. epidermidis could cause peritonitis in peritoneal dialysis patients, similarly to what has been observed with S. aureus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental ocean acidification leads to a shift in resource allocation and to an increased [HCO3-] within the perivisceral coelomic fluid (PCF) in the Baltic green sea urchin Strongylocentrotus droebachiensis. We investigated putative mechanisms of this pH compensation reaction by evaluating epithelial barrier function and the magnitude of skeleton (stereom) dissolution. In addition, we measured ossicle growth and skeletal stability. Ussing chamber measurements revealed that the intestine formed a barrier for HCO3- and was selective for cation diffusion. In contrast, the peritoneal epithelium was leaky and only formed a barrier for macromolecules. The ossicles of 6 week high CO2-acclimatised sea urchins revealed minor carbonate dissolution, reduced growth but unchanged stability. On the other hand, spines dissolved more severely and were more fragile following acclimatisation to high CO2. Our results indicate that epithelia lining the PCF space contribute to its acid-base regulation. The intestine prevents HCO3- diffusion and thus buffer leakage. In contrast, the leaky peritoneal epithelium allows buffer generation via carbonate dissolution from the surrounding skeletal ossicles. Long-term extracellular acid-base balance must be mediated by active processes, as sea urchins can maintain relatively high extracellular [HCO3-]. The intestinal epithelia are good candidate tissues for this active net import of HCO3- into the PCF. Spines appear to be more vulnerable to ocean acidification which might significantly impact resistance to predation pressure and thus influence fitness of this keystone species.