990 resultados para Peripheral nerve sensitization
Resumo:
Background: The sural nerve has been widely investigated in experimental models of neuropathies but information about its involvement in hypertension was not yet explored. The aim of the present study was to compare the morphological and morphometric aspects of different segments of the sural nerve in male and female spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Rats aged 20 weeks (N = 6 in each group) were investigated. After arterial pressure and heart rate recordings in anesthetized animals, right and left sural nerves were removed and prepared for epoxy resin embedding and light microscopy. Morphometric analysis was performed with the aid of computer software, and took into consideration the fascicle area and diameter, as well as myelinated fiber number, density, area and diameter. Results: Significant differences were observed for the myelinated fiber number and density, comparing different genders of WKY and SHR. Also, significant differences for the morphological (thickening of the endoneural blood vessel walls and lumen reduction) and morphometric (myelinated fibers diameter and G ratio) parameters of myelinated fibers were identified. Morphological exam of the myelinated fibers suggested the presence of a neuropathy due to hypertension in both SHR genders. Conclusions: These results indicate that hypertension altered important morphometric parameters related to nerve conduction of sural nerve in hypertensive animals. Moreover the comparison between males and females of WKY and SHR allows the conclusion that the morphological and morphometric parameters of sural nerve are not gender related. The morphometric approach confirmed the presence of neuropathy, mainly associated to the small myelinated fibers. In conclusion, the present study collected evidences that the high blood pressure in SHR is affecting the sural nerve myelinated fibers.
Resumo:
Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where potassium channels limit the depolarizing afterpotential and the effects of depolarizing currents. Axonal excitability studies were performed on patients with genetically confirmed episodic ataxia type 1 to characterize the effects of K(v)1.1 dysfunction on motor axons in vivo. The median nerve was stimulated at the wrist and compound muscle action potentials were recorded from abductor pollicis brevis. Threshold tracking techniques were used to record strength-duration time constant, threshold electrotonus, current/threshold relationship and the recovery cycle. Recordings from 20 patients from eight kindreds with different KCNA1 point mutations were compared with those from 30 normal controls. All 20 patients had a history of episodic ataxia and 19 had neuromyotonia. All patients had similar, distinctive abnormalities: superexcitability was on average 100% higher in the patients than in controls (P < 0.00001) and, in threshold electrotonus, the increase in excitability due to a depolarizing current (20% of threshold) was 31% higher (P < 0.00001). Using these two parameters, the patients with episodic ataxia type 1 and controls could be clearly separated into two non-overlapping groups. Differences between the different KCNA1 mutations were not statistically significant. Studies of nerve excitability can identify K(v)1.1 dysfunction in patients with episodic ataxia type 1. The simple 15 min test may be useful in diagnosis, since it can differentiate patients with episodic ataxia type 1 from normal controls with high sensitivity and specificity.
Resumo:
Little is known about the learning of the skills needed to perform ultrasound- or nerve stimulator-guided peripheral nerve blocks. The aim of this study was to compare the learning curves of residents trained in ultrasound guidance versus residents trained in nerve stimulation for axillary brachial plexus block. Ten residents with no previous experience with using ultrasound received ultrasound training and another ten residents with no previous experience with using nerve stimulation received nerve stimulation training. The novices' learning curves were generated by retrospective data analysis out of our electronic anaesthesia database. Individual success rates were pooled, and the institutional learning curve was calculated using a bootstrapping technique in combination with a Monte Carlo simulation procedure. The skills required to perform successful ultrasound-guided axillary brachial plexus block can be learnt faster and lead to a higher final success rate compared to nerve stimulator-guided axillary brachial plexus block.
Resumo:
Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7 ± 2.7% and 55.0 ± 3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9 ± 1.9% to 33.5 ± 0.7% (p<0.01) and the total Nedd4-2 protein to 44% ± 0.13% of its basal level (p<0.01, n=4 animals in each group, mean ± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
OBJECTIVE: To report clinical features associated with iatrogenic peripheral nerve injury in dogs and cats admitted (1997-2006) to a referral teaching hospital. STUDY DESIGN: Retrospective study. ANIMALS: Dogs (n=18), 9 cats. METHODS: Patients had acute signs of monoparesis attributable to sciatic nerve dysfunction that developed after treatment. Neurologic examination and electrodiagnostic testing were performed. Surgical therapy was used for nerve entrapment and delayed reconstructive surgery used in other cases. RESULTS: Of 27 nerve injuries, 25 resulted from surgery (18 with treatment of pelvic injuries). Iliosacral luxation repair resulted in tibial (4 cats) and peroneal (3 dogs) nerve dysfunction. Other causes were intramedullary pinning of femoral fractures (3), other orthopedic surgery (cemented hip prosthesis [2] and tibial plateau-leveling osteotomy [1]), and perineal herniorrhaphy [1]. Nerve injury occurred after intramuscular injection (1 cat, 1 dog). Immediate surgical treatment was removal of intramedullary nails, extruded cement, or entrapping suture. Delayed nerve transplantation was performed in 2 dogs. Within 1 year, 13 patients recovered completely, clinical improvement occurred in 7, and there was no improvement in 7. Five of the 7 dogs that did not recover had acetabular or ilium fracture. CONCLUSION: Iatrogenic sciatic nerve injury occurred most commonly during treatment of pelvic orthopedic diseases and had a poor prognosis. Clinical variation in sciatic nerve dysfunction in dogs and cats can be explained by species anatomic differences. CLINICAL RELEVANCE: Iatrogenic sciatic nerve injury leads to severely debilitating locomotor dysfunction with an uncertain prognosis for full-functional recovery.
Resumo:
OBJECTIVE: The purpose of this article is to report our preliminary results regarding microsurgical repair of the sural nerve after nerve biopsy, in an attempt to reduce the well-described sensory morbidity and neuroma formation. METHODS: Three patients with a suspected diagnosis of peripheral neuropathy underwent sural nerve biopsies to establish definitive diagnoses. A 10-mm segment of the sural nerve was resected with local anesthesia. After harvesting of the specimen, the proximal and distal nerve stumps were carefully mobilized and united with epineural suture techniques, under a surgical microscope. Sensory evaluations (assessing the presence of hypesthesia/dysesthesia or pain) of the lateral aspect of the foot, in regions designated Areas 1, 2, and 3, were performed before and 6 and 12 months after the biopsies. A visual analog scale was used for pain estimation. RESULTS: The biopsy material was sufficient for histopathological examinations in all cases, leading to conclusive diagnoses (vasculitis in two cases and amyloidosis in one case). The early post-biopsy hypesthesia, which was present for 4 to 8 weeks, improved to preoperative levels as early as 6 months after the nerve repair. Sensory evaluations performed at 6- and 12-month follow-up times demonstrated that none of the patients complained of pain at the biopsy site or distally in the area innervated by the sural nerve. Ultrasonography performed at the 12-month follow-up examination revealed normal sural nerve morphological features, with no neuroma formation, comparable to findings for the contralateral site. CONCLUSION: Microsurgical repair of the sural nerve after biopsy can eliminate or reduce sensory disturbances such as paraesthesia, hypesthesia, and dysesthesia distal to the biopsy site, in the distribution of the sensory innervation of the sural nerve, and can prevent painful neuroma formation. To our knowledge, this article is the first in the literature to report on microsurgical repair of the sural nerve after nerve biopsy. Decreased side effects suggest that this technique can become a standard procedure after sural nerve biopsy, which is commonly required to establish the diagnosis of various diseases, such as peripheral nerve pathological conditions, vasculitis, and amyloidosis. More cases should be analyzed, however, to explore the usefulness of the technique and the reliability of sural nerve biopsy samples in attempts to obtain conclusive diagnoses.
Resumo:
OBJECTIVES Sonographic guidance for peripheral nerve anesthesia has proven increasingly successful in clinical practice; however, fears that a change to sonographically guided regional anesthesia may impair the block quality and operating room work flow persist in certain units. In this retrospective cohort study, block quality and patient satisfaction during the transition period from nerve stimulator to sonographic guidance for axillary brachial plexus anesthesia in a tertiary referral center were investigated. METHODS Anesthesia records of all patients who had elective surgery of the wrist or hand during the transition time (September 1, 2006-August 25, 2007) were reviewed for block success, placement time, anesthesiologist training level, local anesthetic volume, and requirement of additional analgesics. Postoperative records were reviewed, and patient satisfaction was assessed by telephone interviews in matched subgroups. RESULTS Of 415 blocks, 341 were sonographically guided, and 74 were nerve stimulator guided. Sonographically guided blocks were mostly performed by novices, whereas nerve stimulator-guided blocks were performed by advanced users (72.3% versus 14%; P < .001). Block performance times and success rates were similar in both groups. In sonographically guided blocks, significantly less local anesthetics were applied compared to nerve stimulator-guided blocks (mean ± SD, 36.1 ± 7.1 versus 43.9 ± 6.1 mL; P< .001), and less opioids were required (fentanyl, 66.1 ± 30 versus 90 ± 62 μg; P< .001). Interviewed patients reported significantly less procedure-related discomfort, pain, and prolonged procedure time when block placement was sonographically guided (2% versus 20%; P = .002). CONCLUSIONS Transition from nerve stimulator to sonographic guidance for axillary brachial plexus blocks did not change block performance times or success rates. Patient satisfaction was improved even during the early institutional transition period.
Resumo:
Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.
Resumo:
INTRODUCTION Persistent traumatic peroneal nerve palsy, following nerve surgery failure, is usually treated by tendon transfer or more recently by tibial nerve transfer. However, when there is destruction of the tibial anterior muscle, an isolated nerve transfer is not possible. In this article, we present the key steps and surgical tips for the Ninkovic procedure including transposition of the neurotized lateral gastrocnemius muscle with the aim of restoring active voluntary dorsiflexion. SURGICAL TECHNIQUE The transposition of the lateral head of the gastrocnemius muscle to the tendons of the anterior tibial muscle group, with simultaneous transposition of the intact proximal end of the deep peroneal nerve to the tibial nerve of the gastrocnemius muscle by microsurgical neurorrhaphy is performed in one stage. It includes 10 key steps which are described in this article. Since 1994, three clinical series have highlighted the advantages of this technique. Functional and subjective results are discussed. We review the indications and limitations of the technique. CONCLUSION Early clinical results after neurotized lateral gastrocnemius muscle transfer appear excellent; however, they still need to be compared with conventional tendon transfer procedures. Clinical studies are likely to be conducted in this area largely due to the frequency of persistant peroneal nerve palsy and the limitations of functional options in cases of longstanding peripheral nerve palsy, anterior tibial muscle atrophy or destruction.
Resumo:
The analgesic effects of peripheral nerve blocks can be prolonged with the placement of perineural catheters allowing repeated injections of local anaesthetics in humans. The objectives of this study were to evaluate the clinical suitability of a perineural coiled catheter (PCC) at the sciatic nerve and to evaluate pain during the early post-operative period in dogs after tibial plateau levelling osteotomy. Pre-operatively, a combined block of the sciatic and the femoral nerves was performed under sonographic guidance (ropivacaine 0.5%; 0.3 mL kg−1 per nerve). Thereafter, a PCC was placed near the sciatic nerve. Carprofen (4 mg kg−1 intravenously) was administered at the end of anaesthesia. After surgery, all dogs were randomly assigned to receive four injections of ropivacaine (group R; 0.25%, 0.3 mL kg−1) or NaCl 0.9% (group C; 0.3 mL kg−1) every 6 h through the PCC. Pain was assessed by use of a visual analogue scale (VAS) and a multi-dimensional pain score (4Avet) before surgery (T-1), for 390 min (T0, T30, T60, T120, T180, T240, T300, T360 and T390) as well as 1 day after surgery (Day 1). Methadone (0.1 mg kg−1) was administered each time the VAS was ≥40 mm or the 4Avet was ≥5. At T390 dogs received buprenorphine (0.02 mg kg−1). Data were compared using Mann–Whitney rank sum tests and repeated measures analysis of variance. Regardless of group allocation, 55% of dogs required methadone. VAS was significantly lower at T390 (P = 0.003), and at Day 1 (P = 0.002) and so was 4Avet at Day 1 (P = 0.012) in group R than in group C. Bleeding occurred in one dog at PCC placement and PCC dislodged six times of 47 PCCs placed. Minor complications occurred with PCC but allowed four repeated administrations of ropivacaine or saline over 24 h in 91.5% of the cases.
Resumo:
Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.
Resumo:
The effect of three peptides, galanin, sulfated cholecystokinin octapeptide, and neurotensin (NT), was studied on acutely extirpated rat dorsal root ganglia (DRGs) in vitro with intracellular recording techniques. Both normal and peripherally axotomized DRGs were analyzed, and recordings were made from C-type (small) and A-type (large) neurons. Galanin and sulfated cholecystokinin octapeptide, with one exception, had no effect on normal C- and A-type neurons but caused an inward current in both types of neurons after sciatic nerve cut. In normal rats, NT caused an outward current in C-type neurons and an inward current in A-type neurons. After sciatic nerve cut, NT only caused an inward current in both C- and A-type neurons. These results suggest that (i) normal DRG neurons express receptors on their soma for some but not all peptides studied, (ii) C- and A-type neurons can have different types of receptors, and (iii) peripheral nerve injury can change the receptor phenotype of both C- and A-type neurons and may have differential effects on these neuron types.
Resumo:
Two cannabinoid receptors have been identified: CB1, present in the central nervous system (CNS) and to a lesser extent in other tissues, and CB2, present outside the CNS, in peripheral organs. There is evidence for the presence of CB2-like receptors in peripheral nerve terminals. We report now that we have synthesized a CB2-specific agonist, code-named HU-308. This cannabinoid does not bind to CB1 (Ki > 10 μM), but does so efficiently to CB2 (Ki = 22.7 ± 3.9 nM); it inhibits forskolin-stimulated cyclic AMP production in CB2-transfected cells, but does so much less in CB1-transfected cells. HU-308 shows no activity in mice in a tetrad of behavioral tests, which together have been shown to be specific for tetrahydrocannabinol (THC)-type activity in the CNS mediated by CB1. However, HU-308 reduces blood pressure, blocks defecation, and elicits anti-inflammatory and peripheral analgesic activity. The hypotension, the inhibition of defecation, the anti-inflammatory and peripheral analgesic effects produced by HU-308 are blocked (or partially blocked) by the CB2 antagonist SR-144528, but not by the CB1 antagonist SR-141716A. These results demonstrate the feasibility of discovering novel nonpsychotropic cannabinoids that may lead to new therapies for hypertension, inflammation, and pain.
Resumo:
Immunohistochemical visualization of the rat vesicular acetylcholine transporter (VAChT) in cholinergic neurons and nerve terminals has been compared to that for choline acetyltransferase (ChAT), heretofore the most specific marker for cholinergic neurons. VAChT-positive cell bodies were visualized in cerebral cortex, basal forebrain, medial habenula, striatum, brain stem, and spinal cord by using a polyclonal anti-VAChT antiserum. VAChT-immuno-reactive fibers and terminals were also visualized in these regions and in hippocampus, at neuromuscular junctions within skeletal muscle, and in sympathetic and parasympathetic autonomic ganglia and target tissues. Cholinergic nerve terminals contain more VAChT than ChAT immunoreactivity after routine fixation, consistent with a concentration of VAChT within terminal neuronal arborizations in which secretory vesicles are clustered. These include VAChT-positive terminals of the median eminence or the hypothalamus, not observed with ChAT antiserum after routine fixation. Subcellular localization of VAChT in specific organelles in neuronal cells was examined by immunoelectron microscopy in a rat neuronal cell line (PC 12-c4) expressing VAChT as well as the endocrine and neuronal forms of the vesicular monoamine transporters (VMAT1 and VMAT2). VAChT is targeted to small synaptic vesicles, while VMAT1 is found mainly but not exclusively on large dense-core vesicles. VMAT2 is found on large dense-core vesicles but not on the small synaptic vesicles that contain VAChT in PC12-c4 cells, despite the presence of VMAT2 immunoreactivity in central and peripheral nerve terminals known to contain monoamines in small synaptic vesicles. Thus, VAChT and VMAT2 may be specific markers for "cholinergic" and "adrenergic" small synaptic vesicles, with the latter not expressed in nonstimulated neuronally differentiated PC12-c4 cells.
Resumo:
Background and objectives: Peripheral nerve blockade requires regional anesthesia skills that are taught in several formats and assessing technical proficiency has shifted from fulfillment of quotas to comprehensive procedural evaluation. Complete analgesia is the clinical endpoint validating successful nerve blockade but patient, technical and procedural factors influence this result. The purpose of this study was to determine if physician trainee or nurse anesthetist administered sciatic nerve blockade influence postoperative pain scores and opioid analgesic requirements and if patient factors, technique and repetition influence this outcome. Method: Sciatic nerve blockade by nerve stimulation and ultrasound based techniques were performed by senior anesthesiology resident trainees and nurse anesthetists under the supervision of regional anesthesia faculty. Preoperative patient characteristics including obesity, trauma, chronic pain, opioid use and preoperative pain scores were recorded and compared to the post-procedure pain scores and opioid analgesic requirements upon discharge from the post-anesthesia care unit and 24 hours following sciatic nerve blockade. Results: 93 patients received sciatic nerve blockade from 22 nurse anesthetists and 21 residents during 36 months. A significant relation between training background and improved pain scores was not demonstrated but transition from nerve stimulation to ultrasound guided techniques lowered immediate opioid usage in all groups. Patients with pre-existing chronic opioid use had higher postoperative pain scores and opioid dosages following nerve block. Conclusion: Patient analgesia should be an integral measure of proficiency in regional anesthesia techniques and evaluating this procedure outcome for all practitioners throughout their training and beyond graduation will longitudinally assess technical expertise.