989 resultados para POROUS HYDROXYAPATITE SCAFFOLDS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite fibers composed of poly(L-lactide)-grafted hydroxyapatite (PLA-g-HAP) nanoparticles and polylactide (PLA) matrix were prepared by electro-spinning. Environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the composite fibers and the distribution of PLA-g-HAP nanoparticles in the fibers, respectively. At a low content (similar to 4 wt%) of PLA-g-HAP, the nanoparticles dispersed uniformly in the fibers and the composite fibrous mats exhibited higher strength properties, compared with the pristine PLA fiber mats and the simple hydroxyapatite/PLA blend fiber mats. But when the content of PLA-g-HAP further increased, the nanoparticles began to aggregate, which resulted in the deterioration of the mechanical properties of the composite fiber mats. The degradation behaviors of the composite fiber mats were closely related to the content of PLA-g-HAP. At a low PLA-g-HAP content, degradation may be delayed due to the reduction of autocatalytic degradation of PLA. When PLA-g-HAP content was high, degradation rate increased because of the enhanced wettability of the composite fibers and the escape of the nanoparticles from fiber surfaces during incubation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a great need to design functional bioactive substitute materials capable of surviving harsh and diverse conditions within the human body. Calcium-phosphate ceramics, in particular hydroxyapatite are well established substitute materials for orthopaedic and dental applications. The aim of this study was to develop a bioceramic from alga origins suitable for bone tissue application. This was achieved by a novel synthesis technique using ambient pressure at a low temperature of 100 degrees C in a highly alkaline environment. The algae was characterised using SEM, BET, XRD and Raman Spectroscopy to determine its physiochemical properties at each stage. The results confirmed the successful conversion of mineralised red alga to hydroxyapatite, by way of this low-pressure hydrothermal process. Furthermore, the synthesised hydroxyapatite maintained the unique micro-porous structure of the original algae, which is considered beneficial in bone repair applications. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macroporosity(>100µm) in bone void fillers is a known prerequisite for tissue regeneration, but recent literature has highlighted the added benefit of microporosity(0.5 - 10µm). The aim of this study was to compare the in vitro performances of a novel interconnective microporous hydroxyapatite (HA) derived from red algae to four clinically available macroporous calcium phosphate (CaP) bone void fillers. The use of algae as a starting material for this novel void filler overcomes the issue of sustainability, which overshadows continued use of scleractinian coral in the production of some commercially available materials, namely Pro-OsteonTM and Bio-Coral®. This study investigated the physicochemical properties of each bone voidfiller material using x-ray diffraction, fourier transform infrared spectroscopy, inductive coupled plasma, and nitrogen gas absorption and mercury porosimetry. Biochemical analysis, XTT, picogreen and alkaline phosphatase assays were used to evaluate the biological performances of the five materials. Results showed that algal HA is non-toxic to human foetal osteoblast (hFOB) cells and supports cell proliferation and differentiation. The preliminary in vitro testing of microporous algal-HA suggests that it is comparable to the four clinically approved macroporous bone void fillers tested. The results demonstrate that microporous algal HA has good potential for use in vivo and in new tissue engineered strategies for hard tissue repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young's moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass® (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 collagen-BG ratio) produced through needle gauge numbers 8G (3.4 mm diameter and 6 wt% CFD) and 14G (1.6 mm diameter and 14 wt% CFD) was investigated. Second harmonic generation (SHG) imaging of as-made gels revealed an increase in collagen fibril alignment with needle gauge number. In vitro mineralization of IDC-BG gels was confirmed where carbonated hydroxyapatite was detected as early as day 1 in simulated body fluid, which progressively increased up to day 14. In vivo mineralization of, and host response to, acellular IDC and IDC-BG gel scaffolds were further investigated following subcutaneous injection in adult rats. Mineralization, neovascularization and cell infiltration into the scaffolds was enhanced by the addition of BG and at day 21 post injection, there was evidence of remodelling of granulation tissue into woven bone-like tissue in IDC-BG. SHG imaging of explanted scaffolds indicated collagen fibril remodelling through cell infiltration and mineralization over time. In sum, the results suggest that IDC-BG hybrid gels have osteoinductive properties and potentially offer a novel therapeutic approach for procedures requiring the injectable delivery of a malleable and dynamic bone graft that mineralizes under physiological conditions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to develop a pre-endothelialized chitosan (CH) porous hollowed scaffold for application in spinal cord regenerative therapies. CH conduits with different degrees of acetylation (DA; 4% and 15%) were prepared, characterized (microstructure, porosity and water uptake) and functionalized with a recombinant fragment of human fibronectin (rhFNIII7–10). Immobilized rhFNIII7–10 was characterized in terms of amount (125I-radiolabelling), exposure of cell-binding domains (immunofluorescence) and ability to mediate endothelial cell (EC) adhesion and cytoskeletal rearrangement. Functionalized conduits revealed a linear increase in immobilized rhFNIII7–10 with rhFNIII7–10 concentration, and, for the same concentration, higher amounts of rhFNIII7–10 on DA 4% compared with DA 15%. Moreover, rhFNIII7–10 concentrations as low as 5 and 20 lgml 1 in the coupling reaction were shown to provide DA 4% and 15% scaffolds, respectively, with levels of exposed cell-binding domains exceeding those observed on the control (DA 4% scaffolds incubated in a 20 lgml 1 human fibronectin solution). These grafting conditions proved to be effective in mediating EC adhesion/cytoskeletal organization on CH with DA 4% and 15%, without affecting the endothelial angiogenic potential. rhFNIII7–10 grafting to CH could be a strategy of particular interest in tissue engineering applications requiring the use of endothelialized porous matrices with tunable degradation rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Titanium (Ti) is widely proven to enhance bone contact and growth on its surface. It is expected that bone defects could benefit from Ti to promote healing and to increase strength of the implanted area. Purpose: The present study aimed at comparing the potential of porous Ti sponge rods with synthetic hydroxyapatite (HA) for the healing of bone defects in a canine model. Material and Methods: Six mongrel dogs were submitted to three trephined osteotomies of 6.0 x 4.0 mm in one humerus and after 2 months another three osteotomies were performed in the contralateral humerus. A total of 36 defects were randomly filled either with Ti foam, particulate HA, or coagulum (control). The six animals were killed 4 months after the first surgery for histological and histometrical analysis. Results: The Ti-foam surface was frequently found in intimate contact with new bone especially at the defect walls. Control sites showed higher amounts of newly formed bone at 2 months - Ti (p = 0.000) and HA (p = 0.009) - and 4 months when compared with Ti (p = 0.001). Differently from HA, the Ti foam was densely distributed across the defect area which rendered less space for bone growth in the latter`s sites. The use of Ti foams or HA resulted in similar amounts of bone formation in both time intervals. Nevertheless, the presence of a Ti-foam rod preserved defect`s marginal bone height as compared with control groups. Also, the Ti-foam group showed a more mature bone pattern at 4 months than HA sites. Conclusion: The Ti foam exhibited good biocompatibility, and its application resulted in improved maintenance of bone height compared with control sites. The Ti foam in a rod design exhibited bone ingrowth properties suitable for further exploration in other experimental situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydroxyapatite/titania (HA/TiO2) double layers were coated onto Ti scaffolds throughout for orthopaedic applications by sol-gel method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffractometry (XRD) were used for the characterisation of the phase transformations of the dried gels and coated surface structures. Scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) was used for the observation and evaluation of the morphology and phases of the surface layers and for the assessment of the in vitro tests. The in vitro assessments were performed by soaking the HA/TiO2 double coated samples into the simulated body fluid (SBF) for various periods. The TiO2 layer was coated by a dipping-coating method at a speed of 12 cm/min, followed by a heat treatment at 600 °C for 20 min. The HA layer was subsequently dipping-coated on the outer surface at the same speed and then heat-treated at difference temperatures. The results indicat that the HA phase begins to crystallize after a heat treatment at 560 °C. The crystallinity increases obviously at 760 °C. SEM observations find no delamination or crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA/TiO2 coated Ti scaffolds displays excellent bone-like apatite forming ability when it is soaked into SBF. Ti scaffolds after HA/TiO2 double coatings can be anticipated as promising implant materials for orthopaedic applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple sol–gel method was successfully developed for a hydroxyapatite (HA)/TiO2 double layer deposition on a pure titanium substrate. Phase formation, surface morphology, and interfacial microstructure were investigated by differential scanning calorimetry analysis (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The TiO2 layer was coated by a spin coating method at a speed of 1500 rpm for 15 s, followed by a heat treatment at 560 °C for 20 min. The HA film was subsequently spin coated on the outer surface at the same speed and then heat-treated at difference temperatures. Results indicated that the HA phase began to crystallize after a heat treatment at 580 °C; and the crystallinity increased obviously at a temperature of 780 °C. The HA film showed a porous structure and a thickness of 5–7 μm after the heat treatment at 780 °C. SEM observations revealed no delamination and crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA film with a porous structure is expected to be more susceptible to the natural remodeling processes when it is implanted in a living body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A porous Ti–18 at.%Nb–4 at.%Sn (hereafter, Ti–18Nb–4Sn) alloy was prepared by powder metallurgy. The porous structures were examined by scanning electron microscopy and the phase constituents were analysed by X-ray diffraction. Mechanical properties of the porous alloy were investigated using a compressive test. To enhance the bioactivity of the alloy surface, alkali-heat treatment was used to modify the surface. The bioactivity of the pre-treated alloy sample was investigated using a biomimetic process by soaking the sample into simulated body fluid (SBF). Results indicate that the elastic modulus and plateau stress of the porous Ti–18Nb–4Sn alloy decrease with decreasing relative density. The mechanical properties of the porous alloy can be tailored to match those of human bone. After soaking in SBF for 7 days, a hydroxyapatite layer formed on the surface of the pre-treated porous Ti–18Nb–4Sn alloy. The pre-treated porous Ti–18Nb–4Sn alloy therefore has the potential to be a bioactive implant material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nylon is a relatively inert polymer. The ability to easily functionalize nylon with biomolecules will improve the utilization of nylon in biological systems. A potential use of the biofunctionalized nylon scaffolds is in devices for cell therapeutics that can specifically select cells present in small numbers, such as hematopoietic stem cells. This study developed a versatile and simple two-step technique combining oxygen plasma treatment with wet silanization to graft biomolecules onto nylon 6,6 3D porous scaffolds. Scaffolds that were exposed to oxygen plasma exhibited up to 13-fold increase in silane attachment ((3-mercaptopropyl)trimethoxysilane/(3-aminopropyl)trimethoxysilane) compared to untreated scaffolds. To address the limitation of nondestructive characterization of the surface chemistry of 3D scaffolds, fluorescent CdSe/ZnS nanoparticles were used as a reporting tool for -NH(2) functionalized surfaces. Scaffolds that were covalently bound with neutravidin protein remained stable in phosphate buffered saline up to four months. Functionality of the neutravidin-grafted scaffolds was demonstrated by the specific binding of CD4 cells to the scaffold via CD4-specific antibody. Ultimately, these neutravidin-functionalized 3D nylon scaffolds could be easily customized on demand utilizing a plethora of biotinylated biomolecules (antibodies, enzymes and proteins) to select for specific cell of interest. This technique can be extended to other applications, including the enhancement of cell-scaffold interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 The thesis developed an hierarchical porous NiO/YSZ with high mechanical performance using a novel process. This process fabricates initial scaffolds with a controllable porosity by enhancing the surface energy of poly methyl methacrylate (PMMA) for the assembly of NiO-YSZ/PMMA. It maintains the hierarchical porous structure using two-step sintering (TSS) to restrict the growth of nanoparticles, and improves the mechanical properties in combination with a bimodal distribution of NiO/YSZ nano-particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to carry out an in vivo assessment of bone ingrowth in two different types of porous titanium -the first being completely porous, and the second with a porous surface and dense nucleus, manufactured by powder metallurgy- and to evaluate their mechanical properties. Study design: Ten scaffolds from each group were submitted to metallographic analysis and compression tests. Next, two scaffolds of each type were inserted into 14 rabbits, which were sacrificed 8 weeks after surgery. The samples were submitted for histological examination. Results: Metallographic analysis revealed interconnected pores, and the average interconnected pore diameter was about 360 mm, with 36% total porosity. The totally porous titanium samples and the titanium samples with porous surface and dense nucleus showed an average compressive strength of 16.19 MPa and 69.27 MPa, respectively. After 8 weeks, the animals showed bone ingrowth, even into the most internal pores. Conclusions: The pore morphology was effective in permitting bone ingrowth in both groups. Titanium scaffolds with a porous surface and dense nucleus showed the best mechanical properties and most adequate interface.