948 resultados para POLY(2,5-BENZIMIDAZOLE) MEMBRANES
Resumo:
1,5-二氮杂戊二烯盐(vinamidium salts)与4-硝基苯甲脒盐在碱性物质的存在下发生成环反应得含嘧啶环的硝基化合物;硝基化合物用Pd/C和水合肼还原得到棒状含氮芳杂环二胺——2,5-二(4-氨基苯基)嘧啶.通过1H-NMR,13C-NMR,IR,MS及元素分析确证了含氮芳杂环二胺及其中间产物的结构.这种二胺或加一定量对苯二胺与均苯二酐(PMDA)或联苯二酐(BPDA)通过两步法聚合获得一系列聚酰亚胺,通过红外、动态力学、静态力学、热重分析、广角X射线衍射等实验测试了该类聚合物的结构、热性能、机械性能及结晶性能.
Resumo:
Monodisperse oligo[(1,4-phenyleneethynylene)-alt-(2,5-thiopheneethynylene)]s, new candidates for molecular wires, were rapidly synthesized via an iterative divergent/convergent doubling strategy in solution as well as on Merrifield's resin.
Resumo:
A new photoluminescent heterobimetallic Zn(II)-Ag(I) cyano-bridged coordination polymer, [Ag5Zn2(tren)(2)(CN)(9)] (tren = tris(2-aminoethyl)amine) (1), has been synthesized and structurally characterized. It features rare linear pentameric unit of dicyanoargentate(I) ions assembled by d(10)-d(10) interaction as building blocks. Solid state emission spectrum of I shows strong ultraviolet luminescence with emission peak in the range of 376 nm.
Resumo:
This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) (x) (x=2.5-5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5-3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0-5.0 is LaNi(5)phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9 phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I-0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.
Resumo:
近年来,有机薄膜晶体管(OTFTs)因其成本低、加工简便,特别适用于制备大面积柔性器件而引起人们的广泛关注[1].并苯类化合物和噻吩衍生物是目前最重要的两类高迁移率OTFT材料.由并五苯制备的多晶OTFTs器件迁移率可达到5cm2/(V·s)[2];烷基修饰齐聚噻吩的场致迁移率也可达到非晶硅[0·1~1cm2/(V·s)]的水平[3].但是,这两类材料具有较窄的能隙和较高的最高被占分子轨道(HOMO)能级,容易与空气中的氧气和水发生作用,所制备的器件在空气中衰减较快,并且并苯类化合物对光也非常敏感,限制了其应用范围[4~6].因此,制备稳定的高迁移率有机半导体材料是有机光电子研究领域的重要课题之一.制备稳定的高迁移率有机半导体材料的途径包括用较稳定的芳香基团对噻吩齐聚物进行封端,以增大能隙和降低HOMO能级[7].菲类化合物是并苯类化合物的异构体,具有较好的光稳定性[8].[3,2-b]并二噻吩是一种平面稠环分子,与2,2′-二噻吩相比,HOMO能级相对降低,因而具有相对好的稳定性[9].本文合成了2,5-二(2-菲基)-[3,2-b]并二噻吩(PhTT),表征了其基本的物理和化学性质,制备了相应的有机薄膜晶...
Resumo:
In the asymmetric unit of the title compound, C9H8N2O2, there are two crystallographically independent molecules, each of which forms a dimer, via N-H center dot center dot center dot O hydrogen bonds, with an inversion-related molecule.
Resumo:
2-(2-Hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole 1 and 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole 2 were used as anion fluorescent and colorimetric chemosensors with high selectivity for H2PO4- and F- over Cl-, while 2 can even distinguish H2PO4- from F-. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Reaction of salts of the 2,5-disubstituted amino-p-benzoquinone bridging ligand (la-e) with trans-bis(triphenylphosphane)phenylnickel(II) chloride results in the binuclear complexes 2a-e, which show high activities for ethylene polymerization without any cocatalysts. High-molecular-weight, moderately branched polyethylene of broad molecular-weight distribution was obtained.
Resumo:
The interaction between polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was investigated by means of cyclic voltammetry and UV-visible spectroscopy. The results show that the polymerization-depolymerization reaction of DMcT or its dilithium salt Li(2)DMcT is a kinetically quasi-reversible process. PAn exhibits very weak electrochemical activity in neutral propylene carbonate. After doping with protonic acid, such as hydrochloric acid or maleic acid etc., however, it shows an extensively enhanced electroactivity. For the complex system, PAn-DMcT or PAn-Li(2)DMcT, polyaniline has no catalytic activity for the electrochemical polymerization-depolymerization reaction of DMcT or DMcT(2-). Instead, the enhancement of the electrochemical redox activity of PAn-DMcT system compared with that of PAn, DMcT, Li(2)DMcT, and PAn-Li(2)DMcT comes from the protonic doping of PAn by DMcT.
Resumo:
Electrochemical polymerized polyaniline(PAn) film electrode was used to investigate the electrocatalytic effect of PAn on the electrochemical redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT), PAn film electrode was electrochemically treated or immersed in DMcT solution before it was scanned in 1.0 mol/L HCl electrolyte. The cyclic voltammograms of PAn film electrode in 1.0 mol/L HCl solution changed with the above treatment, implying the electrocatalytic effect of PAn on the redox reaction of DMcT, The formation of electron-donor-acceptor adducts through the interaction between thiol or disulfide groups of DMcT and amine or imine groups of PAn during the treatment was probably the reason of the catalysis, The electrochemical properties of the adduct were different from those of PAn and DMcT, The adduct possessed a higher electrochemical activity and a better electrochemical reversibility than DMcT or PAn used alone.
Resumo:
研究了聚苯胺 ( PAn)膜电极在 2 ,5-二巯基 -1 ,3 ,4 -噻二唑 ( DMc T)溶液中电化学处理或浸泡后的循环伏安 ( CV)曲线的变化规律 .实验结果表明 ,PAn膜电极在 DMc T溶液中进行电化学处理或浸泡过程可使DMc T进入 PAn膜内部与 PAn形成复合物 .PAn对 DMc T的电化学催化作用可能和二者之间形成的电子给体 -受体复合物有关 .该复合物的电化学氧化还原特性不同于 PAn和 DMc T,其氧化还原反应速率和可逆性均优于 DMc T
Resumo:
对 Ni6 9.5Al2 8Y2 .5粉末进行球磨 ,获得 Ni Al金属间化合物 .研究粉末结构与球磨时间的关系 ,探索以中间合金的形式加入稀土元素的机械合金化方法 .结果表明 ,加入稀土元素后 ,用机械合金化的方法可以生成新的金属间化合物.
Resumo:
The compatibilization effect of poly(styrene-b-2-ethyl-2-oxazoline) diblock copolymer, P(S-b-EOx), on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(ethylene-co-acrylic acid) (EAA) is examined in terms of phase structure and thermal, rheological and mechanical properties, and its compatibilizing mechanism is investigated by Fourier-transform infrared spectroscopy. The block copolymer, synthesized by a mechanism transformation copolymerization, is used in solution blending of PPO/EAA. Scanning electron micrographs show that the blends exhibit a more regular and finer dispersion on addition of a small amount of P(S-b-EOx). Thermal analysis indicates that the grass transition of PPO and the lower endothermic peal; of EAA components become closer on adding P(S-b-EOx), and the added diblock copolymer is mainly located at the interface between the PPO and EAA phases. The interfacial tension estimated by theological measurement is significantly reduced on addition of a small amount of P(S-b-EOx). The tensile strength and elongation at break increase with the addition of the diblock copolymer for PPO-rich blends, whereas the tensile strength increases but the elongation at break decreases for EAA-rich blends. This effect is interpreted in terms of interfacial activity and the reinforcing effect of the diblock copolymer, and it is concluded that the diblock copolymer plays a role as an effective compatibilizer for PPO/EAA blends. The specific interaction between EAA and polar parts of P(S-b-EOx) is mainly hydrogen bonding. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The compatibilizing effect and mechanism of compatibilization of the diblock copolymer polystyrene-block-poly(4-vinylpyridine) P(S-b-4VPy) on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/chlorinated polyethylene (CPE) were studied by means of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), mechanical properties and FTIR measurements. The block copolymer was synthesized by sequential anionic polymerization and melt-blended with PPO and CPE. The results show that the P(S-b-4VPy) added acts as an effective compatibilizer, located at the interface between the PPO and the CPE phase, reducing the interfacial tension, and improving the interfacial adhesion. The tensile strength and modulus of all blends increase with P(S-b-4VPy) content, whereas the elongation at break increases for PPO-rich blends, but decreases for CPE-rich blends. The polystyrene block of the diblock copolymer is compatible with PPO, and the poly(4-vinylpyridine) block and CPE are partially miscible.
Resumo:
应用串联质谱的碰撞诱导解离和联动扫描技术,研究了2,5-双(4-羟基苯亚甲基)环戊酮的质谱解离特征,提供了双电荷离子存在的实验证据。进一步对双电荷离子(m/z146)的碰撞诱导解离碎裂进行了讨论。