995 resultados para PETROLOGY - Petrography


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strata that record the evolutionary history of the North American continental margin in a region that serves as the basin margin interface between allochthonous sedimentation from the continent and pelagic sedimentation from the oceanic realm were recovered at Deep Sea Drilling Project Site 603, on the lower continental rise. The lowermost unit recovered at this site is composed of upper Berriasian-Aptian interbedded laminated limestone and bioturbated limestone with sandstone to claystone turbidites. This unit can be correlated with the Blake-Bahama Formation in the western North Atlantic. Studies of the laminated and bioturbated limestones were used to determine the depositional environment. Geochemical and petrographic studies suggest that the laminated limestones were deposited from the suspended particulate loads of the nepheloid layer associated with weak bottom-current activity as well as moderate to poorly oxygenated bottom-water conditions. Fragments of macrofossils are also found in the Blake-Bahama Formation drilled at Site 603. Twelve specimens and their host sediment were analyzed for their carbon and oxygen isotopic composition. The macrofossil samples chosen for analysis consist of nine samples of Inoceramus, two ammonite aptychi, and one belemnite sample. Depletion in 18O is observed in recrystallized specimens. The ammonite aptychi have been diagenetically altered and/or exhibit evidence of isotopic fractionation by the organism. Oxygen isotope paleotemperatures obtained from five well-preserved specimens - four of Inoceramus and one of a belemnite - suggest that bottom-water temperatures in the North Atlantic Basin during the Early Cretaceous were very warm, at least 11°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basaltic rocks recovered at the Middle America Trench area off Mexico are typical plagioclase-olivine phyric abyssal tholeiites containing less than 0.2 wt.% K2O. Phenocrysts of plagioclase and olivine usually make up the aggregate. Plagioclase phenocrysts are Ca-rich and up to An90. Olivine phenocrysts, which are always attached to plagioclase phenocrysts, are magnesian, Fo88 to Fo89, and contain 0.2 to 0.3 wt. % of NiO. Plagioclase phenocrysts contain numerous glass inclusions with the Mg/Mg+Fe atomic ratio of 0.70 to 0.73, which is distinctly higher than the same ratio of the bulk rock (0.62-0.63). Olivine of Fo88 to Fo89 is equilibrated with the liquid with an Mg/Mg+Fe atomic ratio of about 0.7, assuming the KDMg-Fe between liquid and olivine of 0.3. Small droplets of glass within glass inclusions in plagioclase are more enriched in K2O and volatiles than the host glass. This enrichment may have been caused by the extraction of Al2O3 as plagioclase from the trapped liquid and implies its immiscibility. Aggregates of plagioclase with small amounts of olivine may have been floated from more primitive magma with an Mg/Mg+Fe atomic ratio of about 0.7, judging from the chemical characteristics mentioned above. Flotation must have occurred at relatively high pressure. Large crystals of plagioclase and smaller crystals of olivine are xenocryst rather than phenocryst. Parental magma of Leg 66 basalt was high-MgO olivine tholeiite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sandstone petrology of Leg 66 samples provides insights into changes through time in the geology of the source regions along the Guerrero portion of the Middle America continental margin. This in turn constrains possible models of the evolution of the Middle America Trench (e.g., de Czerna, 1971; Malfait and Dinkleman, 1972; Karig, 1974). Primarily medium-grained sands and sandstones, representing the widest variety available of trench/trench slope settings and ages, were analyzed in both light and heavy mineral studies. Standard techniques were used as much as possible in order to compare results from other margins and from ancient rocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geological history of Filchnerfjella and surrounding areas (2°E to 8°E) in central Dronning Maud Land, East Antarctica, is constructed from metamorphic and igneous petrology, and structural investigations. The geology of Filchner-fjella consists mainly of metamorphic rocks accompanied by intrusive rocks. Two stages of metamorphism can be recognized in this area. The earlier stage metamorphism is defined as a porphyroblast stage (garnet, hornblende, and sillimanite stable), and the later one is recognized as a symplectic stage (orthopyroxene and cordieritestable). Taking metamorphic textures and geothermobarometries into account, the rocks experienced an early high-P/medium-T followed by a low-P and high-T stage. Partial melting took place during the low-P/high-T stage, because probable melt of leucocratic gneiss contains cordierite. The field relationships and petrography of the syenite at Filchnerfjella are similar to those of post-tectonic plutons from central Dronning Maud Land, and most of the post-tectonic intrusive rocks have within-plate geochemical features. The structural history in Filchnerfjella and surrounding areas can be divided into the Pan-African stage and the Meso to Cenozoic stage that relates to the break-up of Gondwana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from paleoclimatic archives suggests that Earth's climate experienced rapid temperature changes associated with pronounced interhemispheric asymmetry during the last glacial period. Explanations for these climate excursions have converged on nonlinear interactions between ice sheets and the ocean's thermohaline circulation, but the driving mechanism remains to be identified. Here we use multidecadal marine records of faunal, oxygen isotope, and sediment proxies from the northeast Atlantic proximal to the western margins of the last glacial British Ice Sheet (BIS) to document the coupling between ice sheet dynamics, ocean circulation, and insolation changes. The core data reveal successions of short-lived (80-100 years), high-amplitude ice-rafted debris (IRD) events that were initiated up to 2000 years before the deposition of detrital carbonate during Heinrich events (HE) 1 and 2. Progressive disintegration of the BIS 19-16 kyr before present (B.P.) occurred in response to abrupt ocean-climate warmings that impinged on the northeast Atlantic during the early deglaciation. Peak IRD deposition recurs at 180-220 year intervals plausibly involving repeated breakup of glacial tidewater margins and fringing marine ice shelves. The early deglaciation culminated in a major meltwater pulse at ~16.3 kyr B.P. followed by another discharge associated with HE1 some 300 years after. We conclude that temperature changes related to external forcing and marine heat transport caused a rapid response of the BIS and possibly other margins of the Eurasian Ice Sheet. Massive but short-lived meltwater surges influenced the Atlantic meridional overturning circulation thereby contributing to North Atlantic climate variability and bipolar climatic asymmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The volcanism of Central America, according to current theory (Pichler and Weyl, 1973; Stoiber and Carr, 1974; Hey, 1977), is related to the subduction of the Cocos Plate under the North American lithospheric plate and the melting of ocean crust material in the subduction zone (Green and Ringwood, 1968; Dickinson, 1970, Fitton, 1971). Since Cocos Plate subduction occurs at the rate of more than 7 cm/y. (Hey et al., 1977), basalts underlying upper Miocene sediments of the Middle America Trench outer slope, penetrated in Hole 487 (Fig. 1) during Leg 66 (Moore et al., 1979), should have formed far from their present position if current theory is accurate. Present manifestations of basaltic magmatism in adjacent areas of the Pacific derive from the axial part of the East Pacific Rise, the Galapagos spreading center, and transform fracture zones. The question arises: Are there analogs of the Middle America Trench basalts among magmatic cock associated with these modern features, or do the trench basalts have some other origin?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basalts from Hole 504B, Leg 83, exhibit remarkable uniformity in major and trace element composition throughout the 1075.5 m of basement drilled. The majority of the basalts, Group D', have unusual compositions relative to normal (Type I) mid-ocean ridge basalts (MORB). These basalts have relatively high mg values (0.60-0.70) and CaO abundances (11.7-13.7%; Ca/Al = 0.78-0.89), but exhibit a marked depletion in compatible trace elements (Cr and Ni); moderately incompatible trace elements (Zr, Y, Ti, etc.); and highly incompatible trace elements (Nb, LREE, etc.). Petrographic and compositional data indicate that most of these basalts are evolved, having fractionated significant amounts of plagioclase, olivine, and clinopyroxene. Melting experiments on similar basalt compositions from the upper portion of Hole 504B (Leg 70; Autio and Rhodes, 1983) indicate that the basalts are co-saturated with olivine and plagioclase and often clinopyroxene on the 1-atm. liquidus. Two rarely occurring groups, M' and T, are compositionally distinct from Group D' basalts. Group T is strongly depleted in all magmaphile elements except the highly incompatible ones (Nb, La, etc.), while Group M' has moderate concentrations of both moderately and highly incompatible trace elements and is similar to Type I MORB. Groups M' and T cannot be related to Group D' nor to each other by crystal fractionation, crystal accumulation, or magma mixing. The large differences in magmaphile element ratios (Zr/Nb, La/Yb) among these three chemical groups may be accounted for by complex melting models and/or local heterogeneity of the mantle beneath the Costa Rica Ridge. Xenocrysts and xenoliths of plagioclase and clinopyroxene similar in texture and mineral composition to crystals in coarse-grained basalts from the lower portion of the hole are common in Hole 504B basalts. These suggest that addition of solid components either from conduit or magma chamber walls has occurred and may be a common source of disequilibrium crystals in these basalts. However, mixing of plagioclase-laden depleted melts (similar to the Costa Rica Ridge Zone basalts) with normal MORB magmas could provide an alternate source for some refractory plagioclase crystals found out of equilibrium in many phyric MORB. The uniformity of major element compositions in Hole 504B basalts affords an ideal situation for investigating the effects of alteration on some major and trace elements in oceanic basalts. Alteration observed in whole-rock samples records primarily two events - a high-temperature and a low-temperature phase. High-temperature phases include: chlorite, talc, albite, actinolite, sphene, quartz, and pyrite. The low-temperature phases include smectite (saponite), epistilbite or laumontite, and minor calcite. Laumontite may actually straddle the gap between the low- and high-temperature mineral assemblages. Alteration is restricted primarily to partial replacement of primary phases. Metamorphic grade, in general, increases from the top to the bottom of Hole 504B (Legs 69, 70, and 83) as seen in the change from a smectiteto- chlorite-dominated secondary mineral assemblage. However, a systematic progression for the interval recovered during Leg 83 is not apparent. Rather, the extent of alteration appears to be a function of the initial texture and fracture density. Variations in whole-rock major and trace element concentrations cannot be attributed convincingly to any differences in alteration observed. Compositional characteristics of the secondary minerals indicated that extensive remobilization of elements has not occurred; local redistribution is suggested in most cases. Thus, the major and trace element signature of these basalts remains effectively the same as the original composition prior to alteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Site 493, DSDP Leg 66, dioritic basement was reached below lower Miocene (NN1 Zone, 22-24 Ma) terrigenous sediments. Petrographical, mineralogical (including microprobe analyses), and chemical features of the dioritic rocks reveal their magmatic affinity with the calc-alkaline series. Furthermore, their radiometric age (35.3 m.y.) links the basement to the Sierra Madre Occidental in Mexico and to mid-Tertiary volcanic arcs in Central America. The presence of Oligocene diorite 50 km from the trench axis confirms the truncation of the south Mexico margin, which we explain as the result of a 650 to 800 km left-lateral displacement of Central America relative to North America. Truncation must have occurred in the late Miocene, after the diorite intrusion and prior to the present subduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eleven serpentine samples from DSDP Leg 84 and four serpentinized ultramafic samples from Costa Rica and Guatemala were described and their relict mineral compositions measured by electron microprobe to try to determine the origin of the Leg 84 serpentinites and their relationship to the ultramafic rocks of the onshore ophiolites. The Leg 84 samples comprise more than 90% secondary minerals, principally serpentine, with hematitic and opaque oxides, and minor talc and smectites. Four distinct textural types can be identified according to the distribution of opaque phases and smectite. Remnants of spinel, olivine, orthopyroxene, and clinopyroxene occur variously in the samples; spinal occurs in all the samples. Textural evidence suggests that the serpentinites were originally clinopyroxene-bearing harzburgites. Relict mineral compositions are refractory and relatively uniform: olivine, Fo90.6-90.9; orthopyroxene, En90-91; clinopyroxene, Wo47 En50 Fs3; spinels, Cr/Cr + Al = 0.4-0.6. 567A-29-2, 30-35 cm has slightly more magnesian olivines (Fo92) and orthopyroxene, and more aluminous spinels (Cr/Cr + Al = 0.3). These compositions are similar to those inferred for refractory upper-mantle materials and also fall within the range of compositions for relict minerals in abyssal peridotites. They could be of oceanic origin. The onshore samples include serpentinites, a clinopyroxene-bearing harzburgite, and a clinopyroxenite. They too have magnesium-rich silicate assemblages, but relative to the drilled samples have more iron-rich olivines (Fogo) and more aluminous and sodic pyroxenes; spinels which are clearly relicts are very aluminum-rich (Cr/Cr + Al = 0.1-0.25). These samples are most likely mantle materials, but significantly less depleted. Their relationship to the drilled samples is unclear. Serpentinites were the most common basement materials recovered during Leg 84, and there appears to be a bimodal assemblage (basalt/diabase and serpentine) of igneous rocks sampled from the trench slope. Diapirism of serpentine throughout the trench slope and forearc is suggested as an explanation for this distribution of samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altered basalt dikes from Hole 504B were partially melted at 1150°C and 1180°C to determine the composition of the first melts as oceanic Layer 2C is assimilated by a magma chamber. The partial melts are chemically similar to actinolite, the most abundant secondary mineral, but the melts are not simply melted actinolite. High TiO2, P2O5, and K2O abundances of the melts indicate that minor secondary minerals that are enriched in these elements also contribute to the melt. The incorporation of partial melts into a ridge-crest magma chamber may explain the local variability that is sometimes found in ocean ridge basalts that are not readily explained fractional crystallization or partial melting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major-, trace-, and rare-earth element analyses are presented from a suite of basaltic rocks from the basement of the Celebes Sea. The major elements and trace-elements were determined by X-ray fluorescence techniques, and the rare-earth elements were analyzed by instrumental neutron activation analysis. Compositionally the Celebes Sea basalts are very similar to typical normal mid-ocean ridge basalts, such as those described from the Indian Ocean triple junction. Petrogenetic modeling shows that all of the basalts analyzed can be formed by 10% to 20% partial melting of a light rare-earth element-depleted spinel lherzolite followed by fractional crystallization of mixtures of olivine, Plagioclase, and iron oxide. The Celebes Sea is interpreted as a fragment of the basement of the Jurassic Argo abyssal plain trapped during the Eocene to the north of Australia.