961 resultados para PARASITE TOXOPLASMA-GONDII


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Toxoplasmosis is usually a benign infection, except in the event of ocular, central nervous system (CNS), or congenital disease and particularly when the patient is immunocompromised. Treatment consists of drugs that frequently cause adverse effects; thus, newer, more effective drugs are needed. In this study, the possible activity of artesunate, a drug successfully being used for the treatment of malaria, on Toxoplasma gondii growth in cell culture is evaluated and compared with the action of drugs that are already being used against this parasite. Methods: LLC-MK2 cells were cultivated in RPMI medium, kept in disposable plastic bottles, and incubated at 36 degrees C with 5% CO2. Tachyzoites of the RH strain were used. The following drugs were tested: artesunate, cotrimoxazole, pentamidine, pyrimethamine, quinine, and trimethoprim. The effects of these drugs on tachyzoites and LLC-MK2 cells were analyzed using nonlinear regression analysis with Prism 3.0 software. Results: Artesunate showed a mean tachyzoite inhibitory concentration (IC50) of 0.075 mu M and an LLC MK2 toxicity of 2.003 mu M. Pyrimethamine was effective at an IC50 of 0.482 mu M and a toxicity of 11.178 mu M. Trimethoprim alone was effective against the in vitro parasite. Cotrimoxazole also was effective against the parasite but at higher concentrations than those observed for artesunate and pyrimethamine. Pentamidine and quinine had no inhibitory effect over tachyzoites. Conclusions: Artesunate is proven in vitro to be a useful alternative for the treatment of toxoplasmosis, implying a subsequent in vivo effect and suggesting the mechanism of this drug against the parasite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holsback L., Pena H.F.J., Ragozo A., Lopes E. G., Gennari S. M. & Soares R. M. 2012. Serologic and molecular diagnostic and bioassay in mice for detection of Toxoplasma gondii in free range chickens from Pantanal of Mato Grosso do Sul. Pesquisa Veterinaria Brasileira 32(8): 721-726. Setor de Veterinaria e Producao Animal, Universidade Estadual do Norte do Parana, Campus Luiz Meneghel, Rodovia BR 369 Km 54, Bandeirantes, PR 86360-000, Brazil. E-mail: lhsfertonani@uenp.edu.br The aim of this study was to investigate the occurrence of Toxoplasma gondii and compare the results obtained in the Modified Agglutination Test (MAT), Polimerase Chain Reaction (PCR) and bioassay in mice. In order to accomplish this, 40 free-range chickens from eight farms in neighboring areas to the Pantanal in Nhecolandia, Mato Grosso do Sul, were euthanized and blood samples, brain and heart were collected. The occurrence of anti-T. gondii antibodies found in chickens was 67.5% (27 samples), considering as a cutoff point the dilution 1:5. Among the samples analyzed, 7 (25.9%) were positive in the dilution 1: 5, 3 (11.1%) in 1: 10, 2 (7.4%) in 1: 20, 3 (11.1%) in 1: 320, 1 (3.7%) in 1: 640, 3 (11.1%) in 1: 1280, 2 (7.4%) in 1: 2560, 4 (14.8%) in 1: 5120 and 2 (7.4%) in 1: 10.240. From the mixture of tissue samples (brain and heart) from the chickens analyzed, 16 (40%) presented electrophoretic bands compatible with T. gondii by PCR (gene B1). In the comparison of techniques, 59.26% positivity in PCR was revealed among animals that were seropositive in MAT (cutoff 1: 5). From 141 inoculated mice, six (4.44%) died of acute toxoplasmosis between 15 and 23 days after inoculation. Surviving mice were sacrificed at 74 days after inoculation, and a total of 28 cysts were found in the brains of 10 distinct groups. From the seropositive hens, 27 bioassays were performed and 11 (40.7%) isolates were obtained. A greater number of isolations happened in mice that were inoculated with tissues from chickens that had high titers for anti-T. gondii antibodies. Chronic infection in mice was observed in nine groups (33.3%) from five different properties. Among the surviving mice, 25.6% were positive for T. gondii in MAT (1: 25). From mice positive in PCR, 87.5% were also positive in MAT. Among the PCR-negative mice, 5.2% were positive for T. gondii in MAT. It can be concluded through this study that the occurrence of infecton by T. gondii in the rural properties studied was high, that PCR directed to gene B1 does not confirm the viability of the parasite, but it can be used as a screening method for the selection of chickens infected by T. gondii, that the animals with titer greater than 10 must be prioritized for the selection of animals for bioassay, since for them, the chances of isolating the parasite are greater and that seroconversion in experimentally infected mice is not a good indicator for isolating the agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prevalence of Toxoplasma gondii infection in 510 free-range (FR) chickens (380 from 33 small farms, and 130 from a slaughter house for FR chickens) from Espirito Santo state, southeastern Brazil, was investigated. Antibodies to T. gondii were sought using commercial indirect haemagglutination (IHAT, Imuno-HAI Toxo (R), Wama Diagnostica, Sao Paulo, Brazil, cut-off 1:16) and the modified agglutination test (MAT, cut-off 1:25) tests. Attempts were made to isolate viable T. gondii from seropositive chickens by bioassay in mice. Pooled samples of brain, heart and quadriceps muscle of one thigh (total 40 g) from 64 chickens with IHAT titers of >= 1:16 were minced, digested in pepsin and bioassayed in mice. Antibodies to T. gondii were found in 40.4% (206/510) FR chickens by IHAT (titer >= 1:16) and 38.8% (198/510) by MAT (titer >= 1:25); concordance between IHAT and MAT was 81.6% (kappa index = 0.614). Viable T. gondii was isolated (designated TgCkBr234-281) from 48 of 64(75%) seropositive (IHAT titers >= 1:32) FR chickens. Most isolates of T. gondii were virulent for mice; 100% of mice inoculated with 44 of 48 isolates died of toxoplasmosis within 30 days post inoculation (p.i). An epidemiological investigation revealed that people living in rural areas have little knowledge about the parasite and about the risk of acquiring it from raw meat. Results indicated that the locally available IHAT was useful for screening of chicken sera for T. gondii antibodies. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toxoplasma gondii is a protozoan parasite that infects humans and other warm-blooded animals; it uses feral and domestic cats as the definitive hosts. Neospora caninum is a protozoan parasite of animals whose life cycle is very similar to T. gondii but uses canids as definitive hosts. Small rodents play an important role in the life cycle of T. gondii, and a few findings indicated that they may be natural intermediate hosts for N. caninum. The present study was aimed at identifying infections by T. gondii and N. caninum in urban rodents. Infections by T. gondii were quantified using isolation of the parasite by bioassay in mice; molecular methods were also used for both parasites. Overall, 217 rodents were captured. Brain and heart tissues of all rodents were bioassayed in mice for the detection of T. gondii infection. Brain and heart tissues of 121 rodents had the DNA extracted for molecular analysis. Toxoplasma gondii was isolated by bioassay from a single rodent. From the 121 rodents tested for the presence of T. gondii DNA, 2 animals were positive. In contrast, DNA of N. caninum was not detected in any of the samples. In conclusion, the surveys of N. caninum and T. gondii infection in Rattus rattus, Rattus norvegicus, and Mus musculus captured in urban areas of Sao Paulo reveal a striking low frequency of occurrence of these infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Toxoplasma gondii is an intracellular parasite that causes relevant clinical disease in humans and animals. Several studies have been performed in order to understand the interactions between proteins of the parasite and host cells. SAG2A is a 22 kDa protein that is mainly found in the surface of tachyzoites. In the present work, our aim was to correlate the predicted three-dimensional structure of this protein with the immune system of infected hosts. Methods To accomplish our goals, we performed in silico analysis of the amino acid sequence of SAG2A, correlating the predictions with in vitro stimulation of antigen presenting cells and serological assays. Results Structure modeling predicts that SAG2A protein possesses an unfolded C-terminal end, which varies its conformation within distinct strain types of T. gondii. This structure within the protein shelters a known B-cell immunodominant epitope, which presents low identity with its closest phyllogenetically related protein, an orthologue predicted in Neospora caninum. In agreement with the in silico observations, sera of known T. gondii infected mice and goats recognized recombinant SAG2A, whereas no serological cross-reactivity was observed with samples from N. caninum animals. Additionally, the C-terminal end of the protein was able to down-modulate pro-inflammatory responses of activated macrophages and dendritic cells. Conclusions Altogether, we demonstrate herein that recombinant SAG2A protein from T. gondii is immunologically relevant in the host-parasite interface and may be targeted in therapeutic and diagnostic procedures designed against the infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1) is an enzyme that catabolizes free heme, which induces an intense inflammatory response. The expression of HO-1 is induced by different stimuli, triggering an anti-inflammatory response during biological stress. It was previously verified that HO-1 is able to induce indoleamine 2,3-dioxygenase (IDO), an enzyme that is induced by IFN-γ in Toxoplasma gondii infection. To verify the role of HO-1 during in vivo T. gondii infection, BALB/c and C57BL/6 mice were infected with the ME49 strain and treated with zinc protoporphyrin IX (ZnPPIX) or hemin, which inhibit or induce HO-1 activity, respectively. The results show that T. gondii infection induced high levels of HO-1 expression in the lung of BALB/c and C57BL6 mice. The animals treated with ZnPPIX presented higher parasitism in the lungs of both lineages of mice, whereas hemin treatment decreased the parasite replication in this organ and in the small intestine of infected C57BL/6 mice. Furthermore, C57BL/6 mice infected with T. gondii and treated with hemin showed higher levels of IDO expression in the lungs and small intestine than uninfected mice. In conclusion, our data suggest that HO-1 activity is involved in the control of T. gondii in the lungs of both mouse lineages, whereas the hemin, a HO-1 inducer, seems to be involved in the control of parasitism in the small intestine of C57BL/6 mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toxoplasma gondii is an obligate intracellular parasite capable of infecting virtually all warm-blooded species, including humans, but cats are the only definitive hosts. Humans or animals acquire T. gondii infection by ingesting food or water contaminated with sporulated oocysts or by ingesting tissue cysts containing bradyzoites. Toxoplasmosis has the highest human incidence among zoonotic parasitic diseases, but it is still considered an underreported zoonosis. The importance of T. gondii primary infection in livestock is related to the ability of the parasite to produce tissue cysts in infected animals, which may represent important sources of infection for humans. Consumption of undercooked mutton and pork are considered important sources of human Toxoplasma gondii. The first aim of this thesis was to develop a rapid and sensitive in- house indirect ELISA for the detection of antibodies against T. gondii in sheep sera. ROC-curve analysis showed high discriminatory power (AUC=0.999) and high sensitivity (99.4%) and specificity (99.8%) of the method. The ELISA was used to test a batch of sheep sera (375) collected in the Forli-Cesena district. The overall prevalence was estimated at 41.9% demonstrating that T. gondii infection is widely distributed in sheep reared in Forli-Cesena district. Since the epidemiological impact of waterborne transmission route of T.gondii to humans is now thought to be more significant than previously believed, the second aim of the thesis was to evaluate PCR based methods for detecting T. gondii DNA in raw and finished drinking water samples collected in Scotland. Samples were tested using a quantitative PCR on 529 bp repetitive elements. Only one raw water sample (0.3%), out of the 358 examined, tested T. gondii positive demonstrating that there is no evidence that tap water is a source of Toxoplasma infection in Scotland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toxoplasma gondii is a zoonotic intracellular protozoan parasite of worldwide distribution that infects many species of warm-blooded animals, including birds. To date, there is scant information about the seropositivity of T. gondii and the risk factors associated with T. gondii infection in wild bird populations. In the present study, T. gondii infection was evaluated on sera obtained from 1079 wild birds belonging to 56 species (including Falconiformes (n = 610), Strigiformes (n = 260), Ciconiiformes (n = 156), Gruiformes (n = 21), and other orders (n = 32), from different areas of Spain. Antibodies to T. gondii (modified agglutination test, MAT titer ≥1:25) were found in 282 (26.1%, IC95%:23.5–28.7) of the 1079 birds. This study constitute the first extensive survey in wild birds species in Spain and reports for the first time T. gondii antibodies in the griffon vulture (Gyps fulvus), short-toed snake-eagle (Circaetus gallicus), Bonelli's eagle (Aquila fasciata), golden eagle (Aquila chrysaetos), bearded vulture (Gypaetus barbatus), osprey (Pandion haliaetus), Montagu's harrier (Circus pygargus), Western marsh-harrier (Circus aeruginosus), peregrine falcon (Falco peregrinus), long-eared owl (Asio otus), common scops owl (Otus scops), Eurasian spoonbill (Platalea leucorodia), white stork (Ciconia ciconia), grey heron (Ardea cinerea), common moorhen (Gallinula chloropus); in the International Union for Conservation of Nature (IUCN) “vulnerable” Spanish imperial eagle (Aquila adalberti), lesser kestrel (Falco naumanni) and great bustard (Otis tarda); and in the IUCN “near threatened” red kite (Milvus milvus). The highest seropositivity by species was observed in the Eurasian eagle owl (Bubo bubo) (68.1%, 98 of 144). The main risk factors associated with T. gondii seropositivity in wild birds were age and diet, with the highest exposure in older animals and in carnivorous wild birds. The results showed that T. gondii infection is widespread and can be at a high level in many wild birds in Spain, most likely related to their feeding behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of di-cationic pentamidine-analogues against Toxoplama gondii (Rh- and Me49-background) was investigated. The 72 h-growth assays showed that the arylimidamide DB750 inhibited the proliferation of tachyzoites of T. gondii Rh and T. gondii Me49 with an IC(50) of 0.11 and 0.13 muM, respectively. Pre-incubation of fibroblast monolayers with 1 muM DB750 for 12 h and subsequent culture in the absence of the drug also resulted in a pronounced inhibiton of parasite proliferation. However, upon 5-6 days of drug exposure, T. gondii tachyzoites adapted to the compound and resumed proliferation up to a concentration of 1.2 muM. Out of a set of 32 di-cationic compounds screened for in vitro activity against T. gondii, the arylimidamide DB745, exhibiting an IC(50) of 0.03 muM and favourable selective toxicity was chosen for further studies. DB745 also inhibited the proliferation of DB750-adapted T. gondii (IC(50)=0.07 muM). In contrast to DB750, DB745 also had a profound negative impact on extracellular non-adapted T. gondii tachyzoites, but not on DB750-adapted T. gondii. Adaptation of T. gondii to DB745 (up to a concentration of 0.46 muM) was much more difficult to achieve and feasible only over a period of 110 days. In cultures infected with DB750-adapted T. gondii seemingly intact parasites could occasionally be detected by TEM. This illustrates the astonishing capacity of T. gondii tachyzoites to adapt to environmental changes, at least under in vitro conditions, and suggests that DB745 could be an interesting drug candidate for further assessments in appropriate in vivo models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is tempting to extrapolate research findings regarding the intensively studied Toxoplasma gondii to Neospora caninum. This is based on morphological and ultrastructural studies, the molecular phylogeny of both parasites, their wide host ranges in nature, their ability to invade many different cell types in vitro and the occurrence of homologous proteins in both species. However, as Innes and Mattsson point out, T. gondii is the most successful parasite worldwide, whereas N. caninum has a more limited host range. Thus, some of the most challenging questions are: (i) what is T. gondii doing that N. caninum is not doing, or is doing differently, that renders the former so much more successful? And (ii) can some of these features be exploited for the development of interventional tools to limit infection and pathology caused by N. caninum?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Cats are definitive hosts of Toxoplasma gondii and play an essential role in the epidemiology of this parasite. The study aims at clarifying whether cats are able to develop specific antibodies against different clonal types of T. gondii and to determine by serotyping the T. gondii clonal types prevailing in cats as intermediate hosts in Germany. METHODOLOGY To establish a peptide-microarray serotyping test, we identified 24 suitable peptides using serological T. gondii positive (n=21) and negative cat sera (n=52). To determine the clonal type-specific antibody response of cats in Germany, 86 field sera from T. gondii seropositive naturally infected cats were tested. In addition, we analyzed the antibody response in cats experimentally infected with non-canonical T. gondii types (n=7). FINDINGS Positive cat reference sera reacted predominantly with peptides harbouring amino acid sequences specific for the clonal T. gondii type the cats were infected with. When the array was applied to field sera from Germany, 98.8% (85/86) of naturally-infected cats recognized similar peptide patterns as T. gondii type II reference sera and showed the strongest reaction intensities with clonal type II-specific peptides. In addition, naturally infected cats recognized type II-specific peptides significantly more frequently than peptides of other type-specificities. Cats infected with non-canonical types showed the strongest reactivity with peptides presenting amino-acid sequences specific for both, type I and type III. CONCLUSIONS Cats are able to mount a clonal type-specific antibody response against T. gondii. Serotyping revealed for most seropositive field sera patterns resembling those observed after clonal type II-T. gondii infection. This finding is in accord with our previous results on the occurrence of T. gondii clonal types in oocysts shed by cats in Germany.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSCs) have a multilineage differentiation potential and provide immunosuppressive and antimicrobial functions. Murine as well as human MSCs restrict the proliferation of T cells. However, species-specific differences in the underlying molecular mechanisms have been described. Here, we analyzed the antiparasitic effector mechanisms active in murine MSCs. Murine MSCs, in contrast to human MSCs, could not restrict the growth of a highly virulent strain of Toxoplasma gondii (BK) after stimulation with IFN-γ. However, the growth of a type II strain of T. gondii (ME49) was strongly inhibited by IFN-γ-activated murine MSCs. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Further analysis showed that IFN-γ-activated mMSCs also inhibit the growth of Neospora caninum, a parasite belonging to the apicomplexan group as well. Detailed studies with murine IFN-γ-activated MSC indicated an involvement in IRGs like Irga6, Irgb6 and Irgd in the inhibition of N. caninum. Additional data showed that, furthermore, GBPs like mGBP1 and mGBP2 could have played a role in the anti-N. caninum effect of murine MSCs. These data underline that MSCs, in addition to their regenerative and immunosuppressive activity, function as antiparasitic effector cells as well. However, IRGs are not present in the human genome, indicating a species-specific difference in anti-T. gondii and anti-N. caninum effect between human and murine MSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organotypic slice culture explants of rat cortical tissue infected with Toxoplasma gondii tachyzoites were applied as an in vitro model to investigate host-pathogen interactions in cerebral toxoplasmosis. The kinetics of parasite proliferation and the effects of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) in infected organotypic cultures were monitored by light microscopy, transmission electron microscopy (TEM), and quantitative polymerase chain reaction (PCR) assay. As assessed by the loss of the structural integrity of the glial fibrillary acidic protein-intermediate filament network, tachyzoites infected and proliferated mainly within astrocytes, whereas neurons and microglia remained largely unaffected. Toxoplasma gondii proliferation was severely inhibited by IFN-y. However, this inhibition was not linked to tachyzoite-to-bradyzoite stage conversion. In contrast, TNF-alpha treatment resulted in a dramatically enhanced proliferation rate of the parasite. The cellular integrity in IFN-gamma-treated organotypic slice cultures was severely impaired compared with untreated and TNF-alpha-treated cultures. Thus, on infection of organotypic neuronal cultures, IFN-gamma and TNF-alpha exhibit largely detrimental effects, which could contribute to either inhibition or acceleration of parasite proliferation during cerebral toxoplasmosis.