919 resultados para Optimization analysis
Resumo:
In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing
Resumo:
Over recent decades there has been growing interest in the role of non-motorized modes in the overall transport system (especially walking and cycling for private purposes) and many government initiatives have been taken to encourage these active modes. However there has been relatively little research attention given to the paid form of non-motorized travel which can be called non-motorized public transport (NMPT). This involves cycle-powered vehicles which can carry several passengers (plus the driver) and a small amount of goods; and which provide flexible hail-and-ride services. Effectively they are non-motorized taxis. Common forms include cycle-rickshaw (Bangladesh, India), becak (Indonesia), cyclos (Vietnam, Cambodia), bicitaxi (Columbia, Cuba), velo-taxi (Germany, Netherland), and pedicabs (UK, Japan, USA). --------- The popularity of NMPT is widespread in developing countries, where it caters for a wide range of mobility needs. For instance in Dhaka, Bangladesh, rickshaws are the preferred mode for non-walk trips and have a higher mode share than cars or buses. Factors that underlie the continued existence and popularity of NMPT in many developing countries include positive contribution to social equity, micro-macro economic significance, employment creation, and suitability for narrow and crowded streets. Although top speeds are lower than motorized modes, NMPT is competitive and cost-effective for short distance door-to-door trips that make up the bulk of travel in many developing cities. In addition, NMPT is often the preferred mode for vulnerable groups such as females, children and elderly people. NMPT is more prominent in developing countries but its popularity and significance is also gradually increasing in several developed countries of Asia, Europe and parts of North America, where there is a trend for the NMPT usage pattern to broaden from tourism to public transport. This shift is due to a number of factors including the eco-sustainable nature of NMPT; its operating flexibility (such as in areas where motorized vehicle access is restricted or discouraged through pricing); and the dynamics that it adds to the urban fabric. Whereas NMPT may have been seen as a “dying” mode, in many cities it is maintaining or increasing its significance and with potential for further growth. --------- This paper will examine and analyze global trends in NMPT incorporating both developing and developed country contexts and issues such as usage patterns; NMPT policy and management practices; technological development; and operational integration of NMPT into the overall transport system. It will look at how NMPT policies, practices and usage have changed over time and the differing trends in developing and developed countries. In particular, it will use Dhaka, Bangladesh as a case study in recognition of its standing as the major NMPT city in the world. The aim is to highlight NMPT issues and trends and their significance for shaping future policy towards NMPT in developing and developed countries. The paper will be of interest to transport planners, traffic engineers, urban and regional planners, environmentalists, economists and policy makers.
Resumo:
Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning ap- proach using concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reduc- tions; thereby linking the optimization problem to the inherent geometric frame- work. Using these kinematic reductions, we provide a solution to the motion plan- ning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by concatenation of pure motions.
Resumo:
A computational fluid dynamics (CFD) analysis has been performed for a flat plate photocatalytic reactor using CFD code FLUENT. Under the simulated conditions (Reynolds number, Re around 2650), a detailed time accurate computation shows the different stages of flow evolution and the effects of finite length of the reactor in creating flow instability, which is important to improve the performance of the reactor for storm and wastewater reuse. The efficiency of a photocatalytic reactor for pollutant decontamination depends on reactor hydrodynamics and configurations. This study aims to investigate the role of different parameters on the optimization of the reactor design for its improved performance. In this regard, more modelling and experimental efforts are ongoing to better understand the interplay of the parameters that influence the performance of the flat plate photocatalytic reactor.
Resumo:
Compared with viewing videos on PCs or TVs, mobile users have different experiences in viewing videos on a mobile phone due to different device features such as screen size and distinct usage contexts. To understand how mobile user’s viewing experience is impacted, we conducted a field user study with 42 participants in two typical usage contexts using a custom-designed iPhone application. With user’s acceptance of mobile video quality as the index, the study addresses four influence aspects of user experiences, including context, content type, encoding parameters and user profiles. Accompanying the quantitative method (acceptance assessment), we used a qualitative interview method to obtain a deeper understanding of a user’s assessment criteria and to support the quantitative results from a user’s perspective. Based on the results from data analysis, we advocate two user-driven strategies to adaptively provide an acceptable quality and to predict a good user experience, respectively. There are two main contributions from this paper. Firstly, the field user study allows a consideration of more influencing factors into the research on user experience of mobile video. And these influences are further demonstrated by user’s opinions. Secondly, the proposed strategies — user-driven acceptance threshold adaptation and user experience prediction — will be valuable in mobile video delivery for optimizing user experience.
Resumo:
The aim of the study is to establish optimum building aspect ratios and south window sizes of residential buildings from thermal performance point of view. The effects of 6 different building aspect ratios and eight different south window sizes for each building aspect ratio are analyzed for apartments located at intermediate floors of buildings, by the aid of the computer based thermal analysis program SUNCODE-PC in five cities of Turkey: Erzurum, Ankara, Diyarbakir, Izmir, and Antalya. The results are evaluated in terms of annual energy consumption and the optimum values are driven. Comparison of optimum values and the total energy consumption rates is made among the analyzed cities.
Resumo:
This study investigates the application of two advanced optimization methods for solving active flow control (AFC) device shape design problem and compares their optimization efficiency in terms of computational cost and design quality. The first optimization method uses hierarchical asynchronous parallel multi-objective evolutionary algorithm and the second uses hybridized evolutionary algorithm with Nash-Game strategies (Hybrid-Game). Both optimization methods are based on a canonical evolution strategy and incorporate the concepts of parallel computing and asynchronous evaluation. One type of AFC device named shock control bump (SCB) is considered and applied to a natural laminar flow (NLF) aerofoil. The concept of SCB is used to decelerate supersonic flow on suction/pressure side of transonic aerofoil that leads to a delay of shock occurrence. Such active flow technique reduces total drag at transonic speeds which is of special interest to commercial aircraft. Numerical results show that the Hybrid-Game helps an EA to accelerate optimization process. From the practical point of view, applying a SCB on the suction and pressure sides significantly reduces transonic total drag and improves lift-to-drag (L/D) value when compared to the baseline design.
Resumo:
A number of game strategies have been developed in past decades and used in the fields of economics, engineering, computer science, and biology due to their efficiency in solving design optimization problems. In addition, research in multiobjective and multidisciplinary design optimization has focused on developing a robust and efficient optimization method so it can produce a set of high quality solutions with less computational time. In this paper, two optimization techniques are considered; the first optimization method uses multifidelity hierarchical Pareto-optimality. The second optimization method uses the combination of game strategies Nash-equilibrium and Pareto-optimality. This paper shows how game strategies can be coupled to multiobjective evolutionary algorithms and robust design techniques to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid and non-Hybrid-Game strategies are demonstrated.
Resumo:
The objective of this research was to investigate the effect of suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric DLC (Dynamic Load Coefficient), is generally in accordance with the load-sharing metric - DLSC (Dynamic Load Sharing Coefficient). When the static height or static pressure increases, the DLSC optimization ratio declines monotonically. The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.
Resumo:
This thesis presents a multi-criteria optimisation study of group replacement schedules for water pipelines, which is a capital-intensive and service critical decision. A new mathematical model was developed, which minimises total replacement costs while maintaining a satisfactory level of services. The research outcomes are expected to enrich the body of knowledge of multi-criteria decision optimisation, where group scheduling is required. The model has the potential to optimise replacement planning for other types of linear asset networks resulting in bottom-line benefits for end users and communities. The results of a real case study show that the new model can effectively reduced the total costs and service interruptions.