826 resultados para Optics in computing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cognitive neuroscience defines the sense of agency as the experience of controlling one's own actions and, through this control, affecting the external world. We believe that the sense of personal agency is a key factor in how people experience interactions with technology. This paper draws on theoretical perspectives in cognitive neuroscience and describes two implicit methods through which personal agency can be empirically investigated. We report two experiments applying these methods to HCI problems. One shows that a new input modality - skin-based interaction - can substantially increase users' sense of agency. The second demonstrates that variations in the parameters of assistance techniques such as predictive mouse acceleration can have a significant impact on users' sense of agency. The methods presented provide designers with new ways of evaluating and refining empowering interaction techniques and interfaces, in which users experience an instinctive sense of control and ownership over their actions. Copyright 2012 ACM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The proposed research will focus on developing a novel approach to solve Software Service Evolution problems in Computing Clouds. The approach will support dynamic evolution of the software service in clouds via a set of discovered evolution patterns. An initial survey informed us that such an approach does not exist yet and is in urgent need. Evolution Requirement can be classified into evolution features; researchers can describe the whole requirement by using evolution feature typology, the typology will define the relation and dependency between each features. After the evolution feature typology has been constructed, evolution model will be created to make the evolution more specific. Aspect oriented approach can be used for enhance evolution feature-model modularity. Aspect template code generation technique will be used for model transformation in the end. Product Line Engineering contains all the essential components for driving the whole evolution process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Implementations are presented of two common algorithms for integer factorization, Pollard’s “p – 1” method and the SQUFOF method. The algorithms are implemented in the F# language, a functional programming language developed by Microsoft and officially released for the first time in 2010. The algorithms are thoroughly tested on a set of large integers (up to 64 bits in size), running both on a physical machine and a Windows Azure machine instance. Analysis of the relative performance between the two environments indicates comparable performance when taking into account the difference in computing power. Further analysis reveals that the relative performance of the Azure implementation tends to improve as the magnitudes of the integers increase, indicating that such an approach may be suitable for larger, more complex factorization tasks. Finally, several questions are presented for future research, including the performance of F# and related languages for more efficient, parallelizable algorithms, and the relative cost and performance of factorization algorithms in various environments, including physical hardware and commercial cloud computing offerings from the various vendors in the industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-efficiency collection of photons emitted by a point source over a wide field of view (FoV) is crucial for many applications. Multiscale optics offer improved light collection by utilizing small optical components placed close to the optical source, while maintaining a wide FoV provided by conventional imaging optics. In this work, we demonstrate collection efficiency of 26% of photons emitted by a pointlike source using a micromirror fabricated in silicon with no significant decrease in collection efficiency over a 10 mm object space.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the growth in computing power, and advances in numerical methods for the solution of partial differential equations, modeling technologies based around computational fluid dynamics, finite element analysis and optimisation are now being widely used by researchers and industry. Polymer and adhesive materials are now being widely used in electronic and photonic devices. This paper will illustrate the use of modeling tools to predict the behaviour of these materials from product assembly to its performance and reliability.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of computer-based devices for music control has created a need to study how spectators understand new performance technologies and practices. As a part of a larger project examining how interactions with technology can be communicated to spectators, we present a model of a spectator's understanding of error by a performer. This model is broadly applicable throughout HCI, as interactions with technology are increasingly public and spectatorship is becoming more common.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Simulations of the injection stretch-blow moulding process have been developed for the manufacture of poly(ethylene terephthalate) bottles using the commercial finite element package ABAQUS/standard. Initially a simulation of the manufacture of a 330 mL bottle was developed with three different material models (hyperelastic, creep, and a non-linear viscoelastic model (Buckley model)) to ascertain their suitability for modelling poly(ethylene terephthalate). The Buckley model was found to give results for the sidewall thickness that matched best with those measured from bottles off the production line. Following the investigation of the material models, the Buckley model was chosen to conduct a three-dimensional simulation of the manufacture of a 2 L bottle. It was found that the model was also capable of predicting the wall thickness distribution accurately for this bottle. In the development of the three-dimensional simulation a novel approach, which uses an axisymmetric model until the material reaches the petaloid base, was developed. This resulted in substantial savings in computing time. © 2000 IoM Communication Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an experimental investigation carried out on concrete cylinders confined with fibre reinforced polymers (FRP), subjected to monotonic and cyclic loading. Carbon fibres (CFRP) were used as confining material for the concrete specimens. The failure mode, reinforcement ratio based on jacket thickness and type of loading are examined. The study shows that external confinement of concrete can enhance its strength and ductility as well as result in large energy absorption capacity. This has important safety implications, especially in regions with seismic activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A synthesis method is outlined for the design of broadband anti-reflection coatings for use in spaceborne infrared optics. The Golden Section optimisation routine is used to make a search, using designated non-absorptive dielectric thin film combinations, for the coating design which fulfils the required spectral requirements using the least number of layers and different materials. Three examples are given of coatings designed by this method : (I) 1µm to 12µm anti-reflection coating on Zinc Sulphide using Zinc Sulphide and Yttrium Fluoride thin film materials. (ii) 2µm to 14µm anti-reflection coating on Germanium using Germanium and Ytterbium Fluoride thin film materials. (iii) 6µm to 17µm anti-reflection coating on Germanium using Lead Telluride, Zinc Selenide and Barium Fluoride. The measured spectral performance of the manufactured 6µm to 17µm coating on Germanium is given. This is the anti-reflection coating for the germanium optics in the NASA Cassini Orbiter CIRS instrument.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider reshaping an obstacle virtually by using transformation optics in acoustic and electromagnetic scattering. Among the general virtual reshaping results, the virtual minification and virtual magnification in particular are studied. Stability estimates are derived for scattering amplitude in terms of the diameter of a small obstacle, which implies that the limiting case for minification corresponds to a perfect cloaking, i.e., the obstacle is invisible to detection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impending threat of global climate change and its regional manifestations is among the most important and urgent problems facing humanity. Society needs accurate and reliable estimates of changes in the probability of regional weather variations to develop science-based adaptation and mitigation strategies. Recent advances in weather prediction and in our understanding and ability to model the climate system suggest that it is both necessary and possible to revolutionize climate prediction to meet these societal needs. However, the scientific workforce and the computational capability required to bring about such a revolution is not available in any single nation. Motivated by the success of internationally funded infrastructure in other areas of science, this paper argues that, because of the complexity of the climate system, and because the regional manifestations of climate change are mainly through changes in the statistics of regional weather variations, the scientific and computational requirements to predict its behavior reliably are so enormous that the nations of the world should create a small number of multinational high-performance computing facilities dedicated to the grand challenges of developing the capabilities to predict climate variability and change on both global and regional scales over the coming decades. Such facilities will play a key role in the development of next-generation climate models, build global capacity in climate research, nurture a highly trained workforce, and engage the global user community, policy-makers, and stakeholders. We recommend the creation of a small number of multinational facilities with computer capability at each facility of about 20 peta-flops in the near term, about 200 petaflops within five years, and 1 exaflop by the end of the next decade. Each facility should have sufficient scientific workforce to develop and maintain the software and data analysis infrastructure. Such facilities will enable questions of what resolution, both horizontal and vertical, in atmospheric and ocean models, is necessary for more confident predictions at the regional and local level. Current limitations in computing power have placed severe limitations on such an investigation, which is now badly needed. These facilities will also provide the world's scientists with the computational laboratories for fundamental research on weather–climate interactions using 1-km resolution models and on atmospheric, terrestrial, cryospheric, and oceanic processes at even finer scales. Each facility should have enabling infrastructure including hardware, software, and data analysis support, and scientific capacity to interact with the national centers and other visitors. This will accelerate our understanding of how the climate system works and how to model it. It will ultimately enable the climate community to provide society with climate predictions, which are based on our best knowledge of science and the most advanced technology.