971 resultados para Optical flow
Resumo:
In this paper we present a hybrid technique for correcting distortions that appear when projecting images onto geometrically complex, colored and textured surfaces. It analyzes the optical flow that results from perspective distortions during motions of the observer and tries to use this information for computing the correct image warping. If this fails due to an unreliable optical flow, an accurate -but slower and visiblestructured light projection is automatically triggered. Together with an appropriate radiometric compensation, view-dependent content can be projected onto arbitrary everyday surfaces. An implementation mainly on the GPU ensures fast frame rates.
Resumo:
We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform) features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.
Resumo:
El cáncer de próstata es el tipo de cáncer con mayor prevalencia entre los hombres del mundo occidental y, pese a tener una alta tasa de supervivencia relativa, es la segunda mayor causa de muerte por cáncer en este sector de la población. El tratamiento de elección frente al cáncer de próstata es, en la mayoría de los casos, la radioterapia externa. Las técnicas más modernas de radioterapia externa, como la radioterapia modulada en intensidad, permiten incrementar la dosis en el tumor mientras se reduce la dosis en el tejido sano. Sin embargo, la localización del volumen objetivo varía con el día de tratamiento, y se requieren movimientos muy pequeños de los órganos para sacar partes del volumen objetivo fuera de la región terapéutica, o para introducir tejidos sanos críticos dentro. Para evitar esto se han desarrollado técnicas más avanzadas, como la radioterapia guiada por imagen, que se define por un manejo más preciso de los movimientos internos mediante una adaptación de la planificación del tratamiento basada en la información anatómica obtenida de imágenes de tomografía computarizada (TC) previas a la sesión terapéutica. Además, la radioterapia adaptativa añade la información dosimétrica de las fracciones previas a la información anatómica. Uno de los fundamentos de la radioterapia adaptativa es el registro deformable de imágenes, de gran utilidad a la hora de modelar los desplazamientos y deformaciones de los órganos internos. Sin embargo, su utilización conlleva nuevos retos científico-tecnológicos en el procesamiento de imágenes, principalmente asociados a la variabilidad de los órganos, tanto en localización como en apariencia. El objetivo de esta tesis doctoral es mejorar los procesos clínicos de delineación automática de contornos y de cálculo de dosis acumulada para la planificación y monitorización de tratamientos con radioterapia adaptativa, a partir de nuevos métodos de procesamiento de imágenes de TC (1) en presencia de contrastes variables, y (2) cambios de apariencia del recto. Además, se pretende (3) proveer de herramientas para la evaluación de la calidad de los contornos obtenidos en el caso del gross tumor volumen (GTV). Las principales contribuciones de esta tesis doctoral son las siguientes: _ 1. La adaptación, implementación y evaluación de un algoritmo de registro basado en el flujo óptico de la fase de la imagen como herramienta para el cálculo de transformaciones no-rígidas en presencia de cambios de intensidad, y su aplicabilidad a tratamientos de radioterapia adaptativa en cáncer de próstata con uso de agentes de contraste radiológico. Los resultados demuestran que el algoritmo seleccionado presenta mejores resultados cualitativos en presencia de contraste radiológico en la vejiga, y no distorsiona la imagen forzando deformaciones poco realistas. 2. La definición, desarrollo y validación de un nuevo método de enmascaramiento de los contenidos del recto (MER), y la evaluación de su influencia en el procedimiento de radioterapia adaptativa en cáncer de próstata. Las segmentaciones obtenidas mediante el MER para la creación de máscaras homogéneas en las imágenes de sesión permiten mejorar sensiblemente los resultados de los algoritmos de registro en la región rectal. Así, el uso de la metodología propuesta incrementa el índice de volumen solapado entre los contornos manuales y automáticos del recto hasta un valor del 89%, cercano a los resultados obtenidos usando máscaras manuales para el registro de las dos imágenes. De esta manera se pueden corregir tanto el cálculo de los nuevos contornos como el cálculo de la dosis acumulada. 3. La definición de una metodología de evaluación de la calidad de los contornos del GTV, que permite la representación de la distribución espacial del error, adaptándola a volúmenes no-convexos como el formado por la próstata y las vesículas seminales. Dicha metodología de evaluación, basada en un nuevo algoritmo de reconstrucción tridimensional y una nueva métrica de cuantificación, presenta resultados precisos con una gran resolución espacial en un tiempo despreciable frente al tiempo de registro. Esta nueva metodología puede ser una herramienta útil para la comparación de distintos algoritmos de registro deformable orientados a la radioterapia adaptativa en cáncer de próstata. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como cimiento de futuros avances en el procesamiento de imagen médica en los tratamientos de radioterapia adaptativa en cáncer de próstata. Asimismo, se siguen abriendo nuevas líneas de aplicación futura de métodos de procesamiento de imágenes médicas con el fin de mejorar los procesos de radioterapia adaptativa en presencia de cambios de apariencia de los órganos, e incrementar la seguridad del paciente. I.2 Inglés Prostate cancer is the most prevalent cancer amongst men in the Western world and, despite having a relatively high survival rate, is the second leading cause of cancer death in this sector of the population. The treatment of choice against prostate cancer is, in most cases, external beam radiation therapy. The most modern techniques of external radiotherapy, as intensity modulated radiotherapy, allow increasing the dose to the tumor whilst reducing the dose to healthy tissue. However, the location of the target volume varies with the day of treatment, and very small movements of the organs are required to pull out parts of the target volume outside the therapeutic region, or to introduce critical healthy tissues inside. Advanced techniques, such as the image-guided radiotherapy (IGRT), have been developed to avoid this. IGRT is defined by more precise handling of internal movements by adapting treatment planning based on the anatomical information obtained from computed tomography (CT) images prior to the therapy session. Moreover, the adaptive radiotherapy adds dosimetric information of previous fractions to the anatomical information. One of the fundamentals of adaptive radiotherapy is deformable image registration, very useful when modeling the displacements and deformations of the internal organs. However, its use brings new scientific and technological challenges in image processing, mainly associated to the variability of the organs, both in location and appearance. The aim of this thesis is to improve clinical processes of automatic contour delineation and cumulative dose calculation for planning and monitoring of adaptive radiotherapy treatments, based on new methods of CT image processing (1) in the presence of varying contrasts, and (2) rectum appearance changes. It also aims (3) to provide tools for assessing the quality of contours obtained in the case of gross tumor volume (GTV). The main contributions of this PhD thesis are as follows: 1. The adaptation, implementation and evaluation of a registration algorithm based on the optical flow of the image phase as a tool for the calculation of non-rigid transformations in the presence of intensity changes, and its applicability to adaptive radiotherapy treatment in prostate cancer with use of radiological contrast agents. The results demonstrate that the selected algorithm shows better qualitative results in the presence of radiological contrast agents in the urinary bladder, and does not distort the image forcing unrealistic deformations. 2. The definition, development and validation of a new method for masking the contents of the rectum (MER, Spanish acronym), and assessing their impact on the process of adaptive radiotherapy in prostate cancer. The segmentations obtained by the MER for the creation of homogenous masks in the session CT images can improve significantly the results of registration algorithms in the rectal region. Thus, the use of the proposed methodology increases the volume overlap index between manual and automatic contours of the rectum to a value of 89%, close to the results obtained using manual masks for both images. In this way, both the calculation of new contours and the calculation of the accumulated dose can be corrected. 3. The definition of a methodology for assessing the quality of the contours of the GTV, which allows the representation of the spatial distribution of the error, adapting it to non-convex volumes such as that formed by the prostate and seminal vesicles. Said evaluation methodology, based on a new three-dimensional reconstruction algorithm and a new quantification metric, presents accurate results with high spatial resolution in a time negligible compared to the registration time. This new approach may be a useful tool to compare different deformable registration algorithms oriented to adaptive radiotherapy in prostate cancer In conclusion, this PhD thesis corroborates the postulated research hypotheses, and is intended to serve as a foundation for future advances in medical image processing in adaptive radiotherapy treatment in prostate cancer. In addition, it opens new future applications for medical image processing methods aimed at improving the adaptive radiotherapy processes in the presence of organ’s appearance changes, and increase the patient safety.
Resumo:
Despite that Critical Infrastructures (CIs) security and surveillance are a growing concern for many countries and companies, Multi Robot Systems (MRSs) have not been yet broadly used in this type of facilities. This dissertation presents a novel study of the challenges arisen by the implementation of this type of systems and proposes solutions to specific problems. First, a comprehensive analysis of different types of CIs has been carried out, emphasizing the influence of the different characteristics of the facilities in the design of a security and surveillance MRS. One of the most important needs for the surveillance of a CI is the detection of intruders. From a technical point of view this problem can be abstracted as equivalent to the Detection and Tracking of Mobile Objects (DATMO). This dissertation proposes algorithms to solve this specific problem in a CI environment. Using 3D range images of the environment as input data, two detection algorithms for ground robots have been developed. These detection algorithms provide a list of moving objects in the robot detection area. Direct image differentiation and computer vision techniques are used when the robot is static. Alternatively, multi-layer ground reconstructions are compared to detect the dynamic objects when the robot is moving. Since CIs usually spread over large areas, it is very useful to incorporate aerial vehicles in the surveillance MRS. Therefore, a moving object detection algorithm for aerial vehicles has been also developed. This algorithm compares the real optical flow obtained from a down-face oriented camera with an artificial optical flow computed using a RANSAC based homography matrix. Two tracking algorithms have been developed to follow the moving objects trajectories. These algorithms can efficiently handle occlusions and crossings, as well as exchange information among robots. The multirobot tracking can be applied to any type of communication structure: centralized, decentralized or a combination of both. Even more, the developed tracking algorithms are independent of the detection algorithms and could be potentially used with other detection procedures or even with static sensors, such as cameras. In addition, using the 3D point clouds available to the robots, a relative localization algorithm has been developed to improve the position estimation of a given robot with observations from other robots. All the developed algorithms have been extensively tested in different simulated CIs using the Webots robotics simulator. Furthermore, the algorithms have also been validated with real robots operating in real scenarios. In conclusion, this dissertation presents a multirobot approach to Critical Infrastructure Surveillance, mainly focusing on Detecting and Tracking Dynamic Objects.
Resumo:
This research on odometry based GPS-denied navigation on multirotor Unmanned Aerial Vehicles is focused among the interactions between the odometry sensors and the navigation controller. More precisely, we present a controller architecture that allows to specify a speed specified flight envelope where the quality of the odometry measurements is guaranteed. The controller utilizes a simple point mass kinematic model, described by a set of configurable parameters, to generate a complying speed plan. For experimental testing, we have used down-facing camera optical-flow as odometry measurement. This work is a continuation of prior research to outdoors environments using an AR Drone 2.0 vehicle, as it provides reliable optical flow on a wide range of flying conditions and floor textures. Our experiments show that the architecture is realiable for outdoors flight on altitudes lower than 9 m. A prior version of our code was utilized to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012. The code will be released as an open-source ROS stack hosted on GitHub.
Resumo:
In this paper, we consider the problem of autonomous navigation of multirotor platforms in GPS-denied environments. The focus of this work is on safe navigation based on unperfect odometry measurements, such as on-board optical flow measurements. The multirotor platform is modeled as a flying object with specific kinematic constraints that must be taken into account in order to obtain successful results. A navigation controller is proposed featuring a set of configurable parameters that allow, for instance, to have a configuration setup for fast trajectory following, and another to soften the control laws and make the vehicle navigation more precise and slow whenever necessary. The proposed controller has been successfully implemented in two different multirotor platforms with similar sensoring capabilities showing the openness and tolerance of the approach. This research is focused around the Computer Vision Group's objective of applying multirotor vehicles to civilian service applications. The presented work was implemented to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012, gaining two awards: the Special Award on "Best Automatic Performance - IMAV 2012" and the second overall prize in the participating category "Indoor Flight Dynamics - Rotary Wing MAV". Most of the code related to the present work is available as two open-source projects hosted in GitHub.
Resumo:
This paper presents a completely autonomous solution to participate in the Indoor Challenge of the 2013 International Micro Air Vehicle Competition (IMAV 2013). Our proposal is a multi-robot system with no centralized coordination whose robotic agents share their position estimates. The capability of each agent to navigate avoiding collisions is a consequence of the resulting emergent behavior. Each agent consists of a ground station running an instance of the proposed architecture that communicates over WiFi with an AR Drone 2.0 quadrotor. Visual markers are employed to sense and map obstacles and to improve the pose estimation based on Inertial Measurement Unit (IMU) and ground optical flow data. Based on our architecture, each robotic agent can navigate avoiding obstacles and other members of the multi-robot system. The solution is demonstrated and the achieved navigation performance is evaluated by means of experimental flights. This work also analyzes the capabilities of the presented solution in simulated flights of the IMAV 2013 Indoor Challenge. The performance of the CVG UPM team was awarded with the First Prize in the Indoor Autonomy Challenge of the IMAV 2013 competition.
Resumo:
Este trabalho apresenta uma nova metodologia para elastografia virtual em imagens simuladas de ultrassom utilizando métodos numéricos e métodos de visão computacional. O objetivo é estimar o módulo de elasticidade de diferentes tecidos tendo como entrada duas imagens da mesma seção transversal obtidas em instantes de tempo e pressões aplicadas diferentes. Esta metodologia consiste em calcular um campo de deslocamento das imagens com um método de fluxo óptico e aplicar um método iterativo para estimar os módulos de elasticidade (análise inversa) utilizando métodos numéricos. Para o cálculo dos deslocamentos, duas formulações são utilizadas para fluxo óptico: Lucas-Kanade e Brox. A análise inversa é realizada utilizando duas técnicas numéricas distintas: o Método dos Elementos Finitos (MEF) e o Método dos Elementos de Contorno (MEC), sendo ambos implementados em Unidades de Processamento Gráfico de uso geral, GpGPUs ( \"General Purpose Graphics Units\" ). Considerando uma quantidade qualquer de materiais a serem determinados, para a implementação do Método dos Elementos de Contorno é empregada a técnica de sub-regiões para acoplar as matrizes de diferentes estruturas identificadas na imagem. O processo de otimização utilizado para determinar as constantes elásticas é realizado de forma semi-analítica utilizando cálculo por variáveis complexas. A metodologia é testada em três etapas distintas, com simulações sem ruído, simulações com adição de ruído branco gaussiano e phantoms matemáticos utilizando rastreamento de ruído speckle. Os resultados das simulações apontam o uso do MEF como mais preciso, porém computacionalmente mais caro, enquanto o MEC apresenta erros toleráveis e maior velocidade no tempo de processamento.
Resumo:
This paper presents a method for fast calculation of the egomotion done by a robot using visual features. The method is part of a complete system for automatic map building and Simultaneous Localization and Mapping (SLAM). The method uses optical flow in order to determine if the robot has done a movement. If so, some visual features which do not accomplish several criteria (like intersection, unicity, etc,) are deleted, and then the egomotion is calculated. We use a state-of-the-art algorithm (TORO) in order to rectify the map and solve the SLAM problem. The proposed method provides better efficiency that other current methods.
Resumo:
This paper presents a method for the fast calculation of a robot’s egomotion using visual features. The method is part of a complete system for automatic map building and Simultaneous Location and Mapping (SLAM). The method uses optical flow to determine whether the robot has undergone a movement. If so, some visual features that do not satisfy several criteria are deleted, and then egomotion is calculated. Thus, the proposed method improves the efficiency of the whole process because not all the data is processed. We use a state-of-the-art algorithm (TORO) to rectify the map and solve the SLAM problem. Additionally, a study of different visual detectors and descriptors has been conducted to identify which of them are more suitable for the SLAM problem. Finally, a navigation method is described using the map obtained from the SLAM solution.
Resumo:
Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.
Resumo:
Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.
Resumo:
Registration of point clouds captured by depth sensors is an important task in 3D reconstruction applications based on computer vision. In many applications with strict performance requirements, the registration should be executed not only with precision, but also in the same frequency as data is acquired by the sensor. This thesis proposes theuse of the pyramidal sparse optical flow algorithm to incrementally register point clouds captured by RGB-D sensors (e.g. Microsoft Kinect) in real time. The accumulated errorinherent to the process is posteriorly minimized by utilizing a marker and pose graph optimization. Experimental results gathered by processing several RGB-D datasets validatethe system proposed by this thesis in visual odometry and simultaneous localization and mapping (SLAM) applications.
Resumo:
Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950s and 1960s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and bridge type. This paper investigates the use of computer vision systems for SHM. A series of field tests have been carried out to test the accuracy of displacement measurements using contactless methods. A video image of each test was processed using a modified version of the optical flow tracking method to track displacement. These results have been validated with an established measurement method using linear variable differential transformers (LVDTs). The results obtained from the algorithm provided an accurate comparison with the validation measurements. The calculated displacements agree within 2% of the verified LVDT measurements, a number of post processing methods were then applied to attempt to reduce this error.