946 resultados para Omega-3 Fatty Acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triacylglycerol concentrates of eicosapentaenoic and docosahexaenoic omega-3 fatty acids were synthesized either via transesterification or esterification of glycerol with the corresponding ethyl ester or free fatty acid concentrates, respectively. A newly developed food grade immobilized Candida antarctica lipase Β system using an Amberlite FPX-66 hydrophobic matrix, was compared with a commercially available non-food grade commercial system, for their ability to catalyze these reactions. For either system, the transesterification required higher temperature (90◦C) than esterification (70°C) to achieve maximum triacylglycerol yields. The newly developed immobilized system efficiently catalyzes the esterification of free fatty acids with glycerol and differs from the existing commercial system in that it is food grade and has a more uniform and larger particle distribution. The new system significantly improves flow in a packed bed reactor, enabling multiple reuse of the catalyst for up to 80 repeats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The utilization of food waste by microorganisms to produce omega-3 fatty acids or biofuel is a potentially low cost method with positive environmental benefits. In the present study, the marine microorganisms Thraustochytrium sp. AH-2 and Schizochytrium sp. SR21 were used to evaluate the potential of breadcrumbs as an alternate carbon source for the production of lipids under static fermentation conditions. For the Thraustochytrium sp. AH-2, submerged liquid fermentation with 3% glucose produced 4.3 g/L of biomass and 44.16 mg/g of saturated fatty acids after seven days. Static fermentation with 0.5% and 1% breadcrumbs resulted in 2.5 and 4.7 g/L of biomass, and 42.4 and 33.6 mg/g of saturated fatty acids, respectively. Scanning electron microscopic (SEM) studies confirmed the growth of both strains on breadcrumbs. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy for both strains were consistent with the utilization of breadcrumbs for the production of unsaturated lipids, albeit at relatively low levels. The total lipid yield for static fermentation with bread crumbs was marginally lower than that of fermentation with glucose media, while the yield of unsaturated fatty acids was considerably lower, indicating that static fermentation may be more appropriate for the production of biodiesel than for the production of omega-3 rich oils in these strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuna oil rich in omega-3 fatty acids was microencapsulated in whey protein isolate (WPI)-gum arabic (GA) complex coacervates, and subsequently dried using spray and freeze drying to produce solid microcapsules. The oxidative stability, oil microencapsulation efficiency, surface oil and morphology of these solid microcapsules were determined. The complex coacervation process between WPI and GA was optimised in terms of pH, and WPI-to-GA ratio, using zeta potential, turbidity, and morphology of the microcapsules. The optimum pH and WPI-to-GA ratio for complex coacervation was found to be 3.75 and 3 : 1, respectively. The spray dried solid microcapsules had better stability against oxidation, higher oil microencapsulation efficiency and lower surface oil content compared to the freeze dried microcapsules. The surface of the spray dried microcapsules did not show microscopic pores while the surface of the freeze dried microcapsules was more porous. This study suggests that solid microcapsules of omega-3 rich oils can be produced using WPI-GA complex coacervates followed by spray drying and these microcapsules can be quite stable against oxidation. These microcapsules can have many potential applications in the functional food and nutraceuticals industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focused on the use of enzyme "lipase" rather than chemicals to produce concentrates of omega-3 fatty acids. These enzymatic techniques are cheaper, greener and environmentally friendly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resolvin family contains important anti-inflammatory and pro-resolution compounds enzymatically derived in vivo from the polyunsaturated omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). More recently, docosapentaenoic acid (DPA) has emerged as another potentially important precursor in the biological production of resolvin compounds. In this work we have used medium engineering to develop a simple method for the controlled synthesis of two di-hydroxylated diastereomers of DPAn-3 catalyzed by soybean 15-lipoxygenase-1 (15-sLOX-1) in the presence of short chain n-alcohols, including methanol, ethanol and propan-1-ol. The complete structures of the two major products, 7S,17S-dihydroxydocosapenta-8Z,10E,13Z,15E,19Z-enoic acid (7S,17S-diHDPAn-3) and 7R,17S-dihydroxydocosapenta-8Z,10E,13Z,15E,19Z- enoic acid (7R,17S-diHDPAn-3), have been elucidated using spectroscopic analysis. The alcohol-dependent R-dioxygenase activity of soybean 15-lipoxygenase with mono-hydroperoxide intermediate substrates has also been demonstrated with other biologically relevant PUFAs, including DHA, EPA and ARA. The developed method has applications in the production of closely related isomers of naturally occurring resolvins and protectins, demonstrating the versatility of 15-sLOX-1 as a biocatalyst. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary deficiency of ω3 fatty acid during development leads to impaired cognitive function. However, the effects of multiple generations of ω3 fatty-acid deficiency on cognitive impairment remain unclear. In addition, we sought to test the hypothesis that the cognitive impairments of ω3 fatty-acid-deficient mice are mediated through the arachidonic acid-cyclooxygenase (COX) pathway. To address these issues, C57BL/6J mice were bred for 3 generations and fed diets either deficient (DEF) or sufficient (SUF) in ω3 fatty acids. At postnatal day 21, the F3 offspring remained on the dam's diet or were switched to the opposite diet, creating 4 groups. In addition, 2 groups that remained on the dam's diet were treated with a COX inhibitor. At 19 wk of age, spatial-recognition memory was tested on a Y-maze. Results showed that 16 wk of SUF diet reversed the cognitive impairment of F3 DEF mice. However, 16 wk of ω3 fatty-acid-deficient diet impaired the cognitive performance of the F3 SUF mice, which did not differ from that of the F3 DEF mice. These findings suggest that the cognitive deficits after multigenerational maintenance on ω3 fatty-acid-deficient diet are not any greater than are those after deficiency during a single generation. In addition, treatment with a COX inhibitor prevented spatial-recognition deficits in F3 DEF mice. Therefore, cognitive impairment due to dietary ω3 fatty-acid deficiency appears to be mediated by the arachidonic acid-COX pathway and can be prevented by 16 wk of dietary repletion with ω3 fatty acids or COX inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish oils and long-chain omega-3 fatty acids are well recognized for their critical role in human diets. Docosapentaenoic acid (DPA, 22:5n-3) has always been a part of healthy nutrition, since infants obtain almost as much DPA as DHA from human milk. Fish oil supplements and ingredients, oily fish, and grass-fed beef can serve as the primary DPA sources for the general population. Although the DPA levels in fish oils are substantially lower than those of EPA and DHA, concentrated DPA products are now becoming commercially available, and DPA-based drugs are under development. Epidemiological studies show that similar to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 22:6n-3) acids, DPA is linked to various improvements in human health, perhaps owing to its structural similarity to the other two molecules. Studies in mammals, platelets, and cell cultures have demonstrated that DPA reduces platelet aggregation, and improves lipid metabolism, endothelial cell migration, and resolution of chronic inflammation. Further, other in vivo and in vitro studies have shown that DPA can improve neural health. A human supplementation trial with 99.8% pure DPA suggested that it serves as a storage depot for EPA and DHA in the human body. Future randomized controlled human trials with purified DPA will help clarify its effects on human health. They may confirm the available evidence pointing to its nutritional and biological functions, unique or overlapping with those of EPA and DHA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Oxidative stress and impaired antioxidant defenses are reported in schizophrenia and are associated with disturbed neurodevelopment, brain structural alterations, glutamatergic imbalance, increased negative symptoms, and cognitive impairment. There is evidence that oxidative stress predates the onset of acute psychotic illness. Here, we investigate the effects of omega-3 PUFA on the vitamin E and glutathione antioxidant defense system (AODS). METHOD: In 64 help-seeking UHR-individuals (13-25 years of age), vitamin E levels and glutathione were investigated before and after 12 weeks of treatment with either 1.2g/d omega-3 (PUFA-E) or saturated fatty acids (SFA-E), with each condition also containing 30.4mg/d alpha-tocopherol to ensure absorption without additional oxidative risk. RESULTS: In multivariate tests, the effects on the AODS (alpha-tocopherol, total glutathione) were not significantly different (p=0.13, p=0.11, respectively) between treatment conditions. According to univariate findings, only PUFA-E caused a significant alpha-tocopherol increase, while PUFA-E and SFA-E caused a significant gamma- and delta-tocopherol decrease. Total glutathione (GSHt) was decreased by PUFA-E supplementation. CONCLUSION: Effects of the PUFA-E condition on the vitamin E and glutathione AODS could be mechanisms underlying its clinical effectiveness. In terms of the vitamin E protection system, PUFA-E seems to directly support the antioxidative defense at membrane level. The effect of PUFA-E on GSHt is not yet fully understood, but could reflect antioxidative effects, resulting in decreased demand for glutathione. It is still necessary to further clarify which type of PUFA/antioxidant combination, and in which dose, is effective at each stage of psychotic illness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 The objective of the thesis was to understand and develop the process of fermentation in marine microorganisms for the production of omega-3 fatty acids and carotenoids. Among marine microorganisms, thraustochytrids that belong to phytoplankton group was identified as sources of omega-3 fatty acids and other valuable co-products. In this research, more efficient and cost-effective production of omega-3 oils and other value added products was discussed by addressing the below key objectives. Fermentation strategy using lower cost raw materials, particularly carbon. Screening for new strains that can naturally produce high levels of PUFAs together with useful co-products that can be harvested along with the omega-3 oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of krill oil as an alternative source of n-3 long-chain PUFA have been investigated recently. There are conflicting results from the few available studies comparing fish oil and krill oil. The aim of this study was to compare the bioavailability and metabolic fate (absorption, β-oxidation and tissue deposition) of n-3 fatty acids originating from krill oil (phospholipid-rich) or fish oil (TAG-rich) in rats of both sexes using the whole-body fatty acid balance method. Sprague-Dawley rats (thirty-six male, thirty-six female) were randomly assigned to be fed either a krill oil diet (EPA+DHA+DPA=1·38 mg/g of diet) or a fish oil diet (EPA+DHA+DPA=1·61 mg/g of diet) to constant ration for 6 weeks. The faeces, whole body and individual tissues were analysed for fatty acid content. Absorption of fatty acids was significantly greater in female rats and was only minimally affected by the oil type. It was estimated that most of EPA (>90 %) and more than half of DHA (>60 %) were β-oxidised in both diet groups. Most of the DPA was β-oxidised (57 and 67 % for female and male rats, respectively) in the fish oil group; however, for the krill oil group, the majority of DPA was deposited (82-83 %). There was a significantly greater deposition of DPA and DHA in rats fed krill oil compared with those fed fish oil, not due to a difference in bioavailability (absorption) but rather due to a difference in metabolic fate (anabolism v. catabolism).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the behaviour of fibre in the digestive tract on the basis of the passage kinetics of forage and concentrate particles in cows fed different omega-6 fatty-acid sources. The scientific hypothesis of this study was that omega-6 fatty acids do not interfere with the digestion of fibre in the diets of dairy cows. Five primiparous lactating Holstein cows were used in the experiment. The experimental diets were: control (C), ground soyabean (GS), cottonseed (CS), soyabean oil (SO), calcium salts of fatty acids (CSFA). The global mean estimates for the parameters of passage rate (gamma) were 0.038 and 0.055 h(-1) for forage and concentrate, respectively. The only significant effect with respect to the passage rate was a high negative correlation between the concentrate passage rate and dry matter intake. There was less undegradable neutral detergent fibre (NDF) in treatments without added lipid. Dietary supplementation with lipid sources does not alter the kinetic parameters of roughage and concentrate particle passage or in vitro NDF degradation. Sources of omega-6 fatty acids do not alter the rumen degradation and transit of fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high consumption of fructose is linked to the increase in various characteristics of the metabolic syndrome. Fish oil is beneficial for the treatment of these comorbidities, such as insulin resistance, dyslipidemia, and hepatic steatosis. The objective of this study was to evaluate the consequences of the administration of fish oil concomitant to fructose ingestion during the experiment (45 days) and during the final 15 days in high-fructose-fed rats. Male Wistar rats were divided into 5 groups: control; those receiving 10% fish oil (FO); those receiving 60% fructose (Fr); those receiving 60% fructose and 10% fish oil for 45 days (FrFO); and those receiving fructose plus soybean oil for 30 days and fish oil for the final 15 days of the study (FrFO15). There was an increase in triacylglycerol, serum total cholesterol, and hepatic volume in the Fr group. The FO and FrFO groups experienced an increase in lipid peroxidation and a decrease in serum reduced glutathione. The FrFO group suffered greater hepatic injury, with increased alanine aminotransferase levels and DNA damage. Marked n-3 incorporation occurred in the groups receiving fish oil, favoring a better response to the oral glucose tolerance test. Fructose induced comorbidities of the metabolic syndrome, and the use of fish oil promoted a better glucose tolerance, although it was accompanied by more hepatocyte damage.