996 resultados para Nd:GdVO4 crystal
Resumo:
Large-scale GdVO4:Eu3+ nanowires with diameters of about 15 nm and lengths of several micrometers were achieved by a facile hydrothermal method in the presence of disodium ethylenediamine tetraacetate (Na2H2L). The influences of several parameters, such as pH value, reaction temperature, and molar ratio of Na2H2L to Gd3+ on the final products were investigated. The formation mechanism of the as-obtained GdVO4:Eu3+ nanowires is proposed on the basis of time-dependent experiments. It is found that the organic additive Na2H2L, which acts as a shape modifier, has a dynamic effect by adjusting the growth rates of different facets, resulting in the formation of the GdVO4:Eu3+ nanowires. The luminescent spectrum of GdVO4:Eu3+ nanowires shows the strong characteristic dominant emission of the Eu3+ ions at 614 nm.
Resumo:
NdF3 and TbF3 nanoparticles were successfully synthesized via a solvent extraction route using Cynex923 (R3P=O). X-ray diffraction (XRD) study showed that pure hexagonal phase NdF3 and pure orthorhombic phase TbF3 could be obtained under the current synthetic conditions. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations indicated that as-obtained NdF3 nanoplates have a diameter of 50-80 nm and thickness of 10-20 nm and TbF3 products have sphere morphologies with diameter from 70 to 170 nm. The driving force for the growth of NdF3 nanoplates could be attributed to the hexagonal crystal structure. The luminescence properties of NdF3 and TbF3 nanoparticles were investigated, which indicated that NdF3 nanoparticles showed typical emission at 888,1064, and 1328 nm and TbF3 nanoparticles showed characteristic emission of Tb3+ (f-f).
Resumo:
The deposition and coating of GdVO4: Eu3+ nanoparticles on spherical silica was carried out using a simple sol - gel method at low temperature. The GdVO4: Eu3+-coated silica composites obtained were characterized by differential thermal analysis (DTA), thermogravimetric (TG) analysis, x-ray diffraction (XRD), Fourier-transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), photoluminescence spectra, and kinetic decay. It is found that the similar to 5 nm GdVO4: Eu3+ nanoparticles coating the silica spheres are crystal in the as-prepared samples and the crystallinity increases with increasing annealing temperature. The composites obtained are spherical in shape with an average size of 100 nm. The GdVO4: Eu3+ nanoparticles are linked with silica cores by a chemical bond. The photoluminescence spectra of the obtained GdVO4: Eu3+-coated silica composites are similar to those of the bulk GdVO4: Eu3+ phosphors. The strongest peak is near 617 nm, which indicates that Eu3+ is located in the low symmetry site with non-inversion centre.
Resumo:
Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI(2)(THF)(2) (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)(2)Ln(II)(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl(3) (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)(2)Ln(III)Cl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the side-arms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for F-caprolactone (CL).
Resumo:
Reaction of two equivalents of tetrahydrofurfuryl indenyl lithium with anhydrous lanthanide trichlorides in THF afforded bis(tetrahydrofurfurylindenyl) lanthanide chlorides (C4H7OCH2C9H6)(2)LnCl, Ln=La(l), Pr(2), Lu(3). Complexes I and 3 are characterized by single-crystal analysis. The results of crystal structural determination reveal that they are 9-coordinate monomeric intramolecular complexes with a trans arrangement of both the sidearms and indenyl rings in the solid state. The effects of rare earth ionic radii on the structures Of (C4H7OCH2C9H6)(2)LnCl are discussed.
Resumo:
K(4)Ln(2)(CO3)(3)F-4 (Ln=Pr, Nd, Sm, Eu, Gd) is a special type of frequency doubling compound, whose crystal structure exhibits a scarcity of fluorine ions. This leads to two different coordination polyhedrons in the general position of K(2) atoms: [K(2)O6F(1)(2)F(2)] and [K(21)O6F(1)(2)] in a 2/1 ratio. The chemical bonding structures of all constituent atoms of the compound K4Gd2(CO3)(3)F-4 (KGCOF) are comprehensively studied; moreover, the relationship between the chemical bonding structure and the nonlinear optical (NLO) properties is investigated from the chemical bond viewpoint. The theoretical prediction of the NLO tensor coefficient d(11) of KGCOF is in agreement with experimental observation. Theoretical analyses show that the nonlinearity of this crystal type mainly originates from K-O bonds. In addition, the correlation between the NLO tensor d(11) and the refractive index n(0) of KGCOF is discussed. (C) 2000 American Institute of Physics. [S0021-8979(00)07506-X].
Resumo:
The half-sandwich tert-buthylcyclopentadienyl neodymium complex [(CpNdCl2)-Nd-t(THF)(2)](2) (1) reacts with Na2Se5 to give organoneodymium polyselenide complex [Na(THF)(6)][(Cp6Nd6)-Nd-t(mu(6)-Se)(mu(2)-Se-2)(6)] (2) which has been characterized by X-ray crystallography.
Resumo:
From the chemical bond viewpoint, second-order nonlinear optical (NLO) tensor coefficients of the family of new oxoborates Ca4ReO(BO3)(3) (CReOB, Re = La, Nd, Sm, Gd, Er, and Y) have been theoretically predicted. The d(11) tensor coefficient of CReOB is predicted to be -11 d(36)(KDP), which is the largest d(ij) tensor that has been found in borate crystals. From the structural characteristic of CReOB, we find the isolated BO33- clusters play a dominant role in contributions to the total nonlinearity, and the largest d(11) tensor of CReOB-type crystals is also ascribed to these BO33- clusters. We also find the NLO property of this family does not change dramatically for different rare-earth elements. The details of the calculation of CGdOB only are presented.
Resumo:
The Nd-III ion in hexa-mu-chloro-1:2 kappa(2)Cl;1:3 kappa(2)Cl;1:4 kappa(2)Cl-hexachloro-2 kappa(2)Cl,3 kappa(2)Cl,4 kappa(2)Cl- [1 (eta(6))- toluene] trialuminiumneodymium has distorted pentagonal bipyramidal coordination geometry. Five Cl atoms form the equatorial plane, and the toluene ring and the sixth Cl atom occupy the apical sites. The average Nd-C(eta(6)) and Nd-Cl distances are 2.926 (5) and 2.857 (1) Angstrom, respectively.
Resumo:
NdCl3 reacted with C6H5CH2C5H4Na in the ratio 1:1 at -78 degrees C giving [C6H5 CH2C5H4NdCl2 . nTHF], which then was reacted with C8H8K2/THF to yield the title complex [(C8H8)(3)(C6H5CH2C5H4)Nd2K(THF)(3)] (C6H5CH2C5H4 = benzylcyclopentadienyl). The crystal structure of the Nd complex was determined by X-ray diffraction and revealed that the benzyl group is coordinated to the potassium atom to form a new type of trinuclear complex [(eta(8)-C8H8)Nd(mu(2)-eta(8)-C8H8K(THF) (eta(3)-C6H5CH2-mu(2)-eta(5)-C5H4)Nd (THF)(2)(eta(8)-C8H8)]. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
We present the synthesis of AgLnMo(2)O(8) compounds with Ln = La-Nd and Sm. These compounds represent a scheelite-type structure characterized by MoO4- tetrahedrons. IR spectra show five absorption peaks in the region of 1000-400cm(-1), around 800cm(-1) and 400cm(-1), which correspond to the modes of the tetrahedral MoO42- groups. All of AgLnMo(2)O(8) (Ln = La-Nd and Sm) oxides are dielectric materials at room temperature. The temperature dependence of the magnetic susceptibility ofAgLnMo(2)O(8) (Ln = Ce-Nd and Sm) shows Curie-Weiss law behavior from 100K to 300K. This indicates that both Ce and Pr exist in +3 oxidation state in AgLnMo(2)O(8). For AgLaMo2O8, diamagnetic properties are found as expected.
Resumo:
The interaction of [(C(5)H(4)R)(2)NdCl.2LiCl] (R = H, Bu(t)) with one equivalent of Li[(CH2)(CH2)PPh(2)] in refluxing tetrahydrofuran gave the purplish-blue complex [(C(5)H(4)R)(3)NdCH2P(Me)Ph(2)] in 50% yield. The compounds have been fully characterized by analytical, spectroscopic and X-ray diffraction methods. Variable temperature P-31{H-1} NMR spectroscopy indicated the existence of the following equilibrium: [(C(5)H(4)R)(3)NdCH2P(Me)Ph(2)] + THF reversible arrow (C(5)H(4)R)(3)Nd(THF) + CH2=P(Me)Ph(2). At room temperature, the exchange between the coordinated and free ylide ligand is slow on the NMR time scale.
Resumo:
LnCl3 (Ln = Nd, Er) reacts with K2C8H8 to yield the complex (C8H8)LnCl.2THF, which reacts with K(2,4-C7H11) (2,4-C7H11 = 2,4-dimethylpentadienyl) to form (C8H8)Ln(2,4-C7H11).THF. The compound (C8H8)Nd(2,4-C7H11).THF(1) crystallizes from the mixed solvent
Resumo:
The title complex, tris[2(eta5)-tert-butylcyclopentadi-enyl]-mu-chloro-1:2kappa2Cl-tris(tetrahydrofuran-1kappaO)lithiumneodymium, [Nd(C9H13)3(mu-Cl)Li(C4H8O)3], consists of the neutral moiety ((t)BuCp)3Nd linked to the cation [Li(thf)3]+ by a mu-Cl bridge
Resumo:
The complexes of Ln(L-Pro)s(H2O)2(ClO4)3(Ln = Pr, Nd and Er. L-Pro = L-Proline) were synthesized and characterized by elemental analysis, IR. spectra and thermal analysis. The singal crystal Pr2(L-Pro)6(H2O)4(ClO4)6 Was also obtained. The crystal belongs to monoclinic, P2(1), a = 0.9879 (3) nm, b = 2.1883 (4) nm, c = 1.3393 (2)nm, beta = 91.23(2)-degrees, V = 2.895(1) nm3, Z = 2. R = 0.035 for 5032 observed reflections. The coordination polyhedron of Pr(III) ion comprises six oxygen atoms from L-Pro molecules and two water molecules. Each L-Pro molecule coordinates to two Pr(III) ions through its carboxyl group which serves as a bridging bidentate ligand to form onedimensional chain structure.