984 resultados para Natural Product Synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we describe our application of the O-directed free radical hydrostannation of disubstituted alkyl-acetylenes (with Ph3SnH and Et3B) to the (+)-pumiliotoxin B total synthesis problem. Specifically, we report on the use of this method in the synthesis of the Overman alkyne 8, and thereby demonstrate the great utility of this process in a complex natural product total synthesis setting for the very first time. We also report here on a new, stereocontrolled, and highly practical enantioselective pathway to Overman's pyrrolidine epoxide partner 9 for 8, which overcomes the previous requirement for use of preparative HPLC to separate the 1:1 mixture of diastereomeric epoxides that was obtained in the original synthesis of 9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chemical legacy: Keck and his team have chemically pursued the bryostatin 1 structure with great vigor in recent years and, in late 2010, they finally completed their quest of developing a short and efficient total synthesis of this complex natural product (see structure). The present Highlight provides a brief but nevertheless detailed overview of the Keck synthesis and its chemical legacy in terms of new reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The implementation of chiral centres within biologically active compounds has been a perplexing yet motivational force in chemistry. This work presents the attempted formation of a concurrent or sequential tandem catalyzed methodology of enantioselective nucleophilic addition and electrophilic cyclization. The 2'- arylalkynyl- aldehyde, ketone, and imine substrates used within were adeptly chosen with a dually activated structure; 1) for nucleophilic addition to the electrophilic substituents; and 2) for carbophilic activation of the alkyne substituent to undergo cyclization. To accomplish the nucleophilic addition, two distinct allylation methodologies were pursued: (/?)-BINOL catalyzed-allylboration and (5)- BINAP-AgF catalyzed-allylsilylation. BINAP catalyzed enantioselective allylation of 2'-arylalkynyl-aldehydes, to form chiral homoallylic alcohols, was successful. Homoallylic alcohols were isolated with high enantio-purity (>80%), which then underwent sequential cyclization to form chiral allylic phthalans, in moderate yields. An application of this methodology towards the construction of biologically active compounds was included with the partial synthesis of the natural product and H. pylori inhibitor, (+)-Spirolaxine methyl ether.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present studies describe our recent progress in target oriented synthesis of complex organic molecules from aromatic precursors. The latest synthetic approaches toward vinca alkaloids are described and include the construction of model substrates for the investigation into Diels-Alder, radical cascade, and tandem Michael addition reactions as possible routes to the family of alkaloids. Also described are the chemoenzymatic syntheses of the natural product (-)-idesolide and unnatural polyhydroxylated pyrrolidines generated from the biotransformation of benzoic acid with Ralstonia eutropha B9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the chemoenzymatic synthesis of three morphine alkaloids. The total synthesis of dihydrocodeine and hydrocodone was accomplished starting from bromobenzene in 16 and 17 steps, respectively. The key steps included a microbial oxidation of bromobenzene by E. coli JM109 (pDTG601A), a Kazmaier-Claisen rearrangement of glycinate ester to generate C-9 and C-14 stereo centers, a Johnson-Claisen rearrangement to set the C-13 quaternary center, and a C-10/C-11 ring closure via a Friedel-Crafts reaction. In addition, the total synthesis of ent-hydromorphone starting from β-bromoethylbenzene in 12 steps is also described. The key reactions included the enzymatic dihydroxylation of β-bromoethylbenzene to the corresponding cis-cyclohexadienediol, a Mitsunobu reaction, and an oxidative dearomatization followed by an intramolecular [4+2] cycloaddition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two synthetic projects were embarked upon, both fraught with protecting group nuance and reaction selectivity. Transformations of the opiate skeleton remain a valuable tool for the development of new medicines. Thebaine, a biosynthetic intermediate in the expression of morphine, was converted in three steps to oripavine through two parallel modes. Through the use of protecting group manipulations, two irreversible scaffold rearrangements were avoided during aryl methyl ether bond cleavage. This chemistry constitutes a new path in manipulations of the morphinan scaffold through protective groups. A new compound family, the flacourtosides, contains an unusual cyclohexenone fragment. The newly described compounds show in preliminary tests antiviral activity against dengue and chikungunya. This aglycone was approached on three pathways, all beginning with the chemoenzymatic dihydroxylation of benzoic acid. A first attempt from a known vinyl epoxide failed to epimerize and cooperate under deprotective conditions. A second and third attempt made use of a diastereoselective dihydroxylation reaction, which was critical in reaching the correct stereochemistry and oxidation state. The methyl ester of the aglycone was prepared, constituting the first synthesis of the non-trivial natural product framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La synthèse énantiosélective de la (+)-ambruticine S, un produit naturel antifongique a été effectuée au sein de notre groupe. Trois approches ont été développées pour la synthèse du fragment lactone (cycle A). Ces trois voies d’accès au cycle A ont pour intermédiaire commun le methyl α-D-glycopyranoside déjà porteur du diol requis et disponible commercialement à bon prix. Une désoxygénation de l’hydroxyle en C-4 et l’homologation d’un carbone de la chaine latérale en C-6 ont permis l’obtention du cycle lactonique A. Le deuxième projet est une collaboration entre le groupe Hanessian et ISIS Pharmaceuticals afin de développer de nouveaux oligonucléosides antisens. Les nucléosides antisens [4.3.0]-bicycliques cis et trans ont été synthétisés avec succès à partir d’un monosaccharide naturel commun, L-arabinose, porteur des stéréocentres requis. Un réaction clé d’allylation de Sakurai a permis d’obtenir les diastéréoisomères cis et trans dans des conditions de contrôle de type Felkin-Ahn et de contrôle par chélation respectivement. Les composés bicycliques finaux cibles ont été obtenus par une réaction d’aldol intramoléculaire catalyzéé par la proline, par métathèse de fermeture de cycle et par l’application de la méthode de Vorbrüggen pour la synthèse de nucléosides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse décrit deux thèmes principaux: 1) la conception, la synthèse, et l'évaluation biophysique des nucléosides tricycliques, et 2) la synthèse de nagilactone B, un produit naturel norditerpenoïde dilactone de la famille de produits naturels “podolactone”. Le premier chapitre décrit la stratégie de design rationnel des nucléosides nommé “restriction conformationnelle double” basée sur les études de modélisation structurales des duplex ADN–ARN modifiés. Cette stratégie implique un blocage du cycle furanose dans une configuration de type N- ou S, et une restriction de la rotation torsionelle autour de l’angle γ. La première contrainte a été incorporée avec un pont méthylène entre l’oxygène en position 2′ et le carbone 4′ du nucléoside. Cette stratégie a été inspirée par les acides nucléiques bloqués (ou “locked nucleic acid”, LNA). La deuxième contrainte a été réalisée en ajoutant un carbocycle supplémentaire dans l'échafaud de l’acide nucléique bloqué. Les défis synthétiques de la formation des nucléotides modifiés à partir des carbohydrates sont décrits ainsi que les améliorations aux stabilités thermiques qu’ils apportent aux duplex oligonucléïques dont ils font partie. Chapitres deux et trois décrivent le développement de deux voies synthétiques complémentaires pour la formation du noyau de nagilactone B. Ce produit naturel a des implications pour le syndrome de Hutchinson–Gilford, à cause de son habilité de jouer le rôle de modulateur de l’épissage d’ARN pré-messager de lamine A. Ce produit naturel contient sept stereocentres différents, dont deux quaternaires et deux comprenant un syn-1,2-diol, ainsi que des lactones à cinq ou six membres, où le cycle à six ressemble à un groupement α-pyrone. La synthèse a débuté avec la cétone de Wieland-Miescher qui a permis d’adresser les défis structurels ainsi qu’explorer les fonctionnalisations des cycles A, B et D du noyau de nagilactone B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

13C-2H correlation NMR spectroscopy (13C-2H COSY) permits the identification of 13C and 2H nuclei which are connected to one another by a single chemical bond via the sizeable 1JCD coupling constant. The practical development of this technique is described using a 13C-2H COSY pulse sequence which is derived from the classical 13C-1H correlation experiment. An example is given of the application of 13C-2H COSY to the study of the biogenesis of natural products from the anti-malarial plant Artemisia annua, using a doubly-labelled precursor molecule. Although the biogenesis of artemisinin, the anti-malarial principle from this species, has been extensively studied over the past twenty years there is still no consensus as to the true biosynthetic route to this important natural product – indeed, some published experimental results are directly contradictory. One possible reason for this confusion may be the ease with which some of the metabolites from A. annua undergo spontaneous autoxidation, as exemplified by our recent in vitro studies of the spontaneous autoxidation of dihydroartemisinic acid, and the application of 13C-2H COSY to this biosynthetic problem has been important in helping to mitigate against such processes. In this in vivo application of 13C-2H COSY, [15-13C2H3]-dihydroartemisinic acid (the doubly-labelled analogue of the natural product from this species which was obtained through synthesis) was fed to A. annua plants and was shown to be converted into several natural products which have been described previously, including artemisinin. It is proposed that all of these transformations occurred via a tertiary hydroperoxide intermediate, which is derived from dihyroartemisinic acid. This intermediate was observed directly in this feeding experiment by the 13C-2H COSY technique; its observation by more traditional procedures (e.g., chromatographic separation, followed by spectroscopic analysis of the purified product) would have been difficult owing to the instability of the hydroperoxide group (as had been established previously by our in vitro studies of the spontaneous autoxidation of dihydroartemisinic acid). This same hydroperoxide has been reported as the initial product of the spontaneous autoxidation of dihydroartemisinic acid in our previous in vitro studies. Its observation in this feeding experiment by the 13C-2H COSY technique, a procedure which requires the minimum of sample manipulation in order to achieve a reliable identification of metabolites (based on both 13C and 2H chemical shifts at the 15-position), provides the best possible evidence for its status as a genuine biosynthetic intermediate, rather than merely as an artifact of the experimental procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first synthesis of the natural product (+)-mutisianthol was accomplished in 11 steps and in 21% overall yield from 2-methylanisole. The synthesis of its enantiomer was also performed in a similar overall yield. The absolute configuration of the sesquiterpene (+)-mutisianthol was assigned as (1S,3R). Key steps in the route are the asymmetric hydrogenation of a nonfunctionalized olefin using chiral iridium catalysts and the ring contraction of 1,2-dihydronaphthalenes using thallium(III) or iodine(III). The target molecules show moderate activity against the human tumor cell lines SF-295, HCT-8, and MDA-MB-435.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioinorganic natural product chemistry is a relatively unexplored but rapidly developing field with enormous potential for applications in biology, biotechnology (especially in regards to nanomaterial development, synthesis and environmental cleanup) and biomedicine. In this review the occurrence of metals and metalloids in natural products and their synthetic derivatives are reviewed. A broad overview of the area is provided followed by a discussion on the more common metals and metalloids found in natural sources, and an overview of the requirements for future research. Special attention is given to metal hyperaccumulating plants and their use in chemical synthesis and bioremediation, as well as the potential uses of metals and metalloids as therapeutic agents. The potential future applications and development in the field are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several syntheses have already been reported for cis-trikentrins and herbindoles, which are indole alkaloids unsubstituted at the C2 and C3 positions that bear a trans-1,3-dimethylcyclopentyl unit. Herein, we describe the first asymmetric and stereoselective synthesis of the more challenging trans-trikentrin A as its naturally occurring isomer. Different approaches were investigated and the strategy of choice was a combination of an enzymatic kinetic resolution and a thallium(III)-mediated ring contraction. The antiproliferative activities of the natural product and related intermediates have been tested against human tumor cell lines, leading to the discovery of new compounds with potent antitumor activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main research theme of this dissertation is the synthesis of g- and b-carbolines using a metal-catalyzed [2+2+2] cycloaddition strategy of tethered alkynyl-ynamides (diynes) with nitriles. g- and b-carbolines form the core of a large group of natural product and represent important targets for organic chemists. Many of these carbolines showed pharmacological effects ranging from anti-tumor to anxiolytic and anti-HIV activity. A model study with N-Ethynyl-N-tosyl-2-(2-phenylethynyl)aniline and methyl cyanoformate showed that rhodium-based catalysts promote efficiently the reaction. A further optimization showed that the regioselectivity of the reaction can be tuned by the choice of the solvent or by the catalytic system. Application to a larger scope of diynes showed that the regioselectivity strongly depends on the type of substitution of the alkynyl moieties, giving regioselectivities in the range g:b = 1/0 to g:b = 0/1. This [2+2+2] cycloaddition approach for the synthesis of the g- and b-carboline cores was successfully applied to the first total synthesis of Isoperlolyrine and the total synthesis of Perlolyrine. Extension of this strategy to heterocumulenes as cycloaddition partners allowed the synthesis of a g-carbolinone, a thiopyrano[3,4-b]indol-3-imine and thiopyranothiones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coumarins are a large family of natural and synthetic compounds exerting different pharmacological effects, including cytotoxic, anti-inflammatory or antimicrobial. In the present communication we report the synthesis of a series of 12 diversely substituted 4-oxycoumarin derivatives including methoxy substituted 4-hydroxycoumarins, methyl, methoxy or unsubstituted 3-aryl-4-hydroxycoumarins and 4-benzyloxycoumarins and their anti-proliferative effects on breast adenocarcinoma cells (MCF-7), human promyelocytic leukemia cells (HL-60), human histiocytic lymphoma cells (U937) and mouse neuroblastoma cells (Neuro2a). The most potent bioactive molecule was the 4-hydroxy-5,7-dimethoxycoumarin (compound 1) which showed similar potency (IC(50) 0.2-2 μM) in all cancer cell lines tested. This non-natural product reveals a simple bioactive scaffold which may be exploited in further studies.