960 resultados para Multiple or Simultaneous Equation Models: Time-Series Models
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
After more than forty years studying growth, there are two classes of growth models that have emerged: exogenous and endogenous growth models. Since both try to mimic the same set of long-run stylized facts, they are observationally equivalent in some respects. Our goals in this paper are twofold First, we discuss the time-series properties of growth models in a way that is useful for assessing their fit to the data. Second, we investigate whether these two models successfully conforms to U.S. post-war data. We use cointegration techniques to estimate and test long-run capital elasticities, exogeneity tests to investigate the exogeneity status of TFP, and Granger-causality tests to examine temporal precedence of TFP with respect to infrastructure expenditures. The empirical evidence is robust in confirming the existence of a unity long-run capital elasticity. The analysis of TFP reveals that it is not weakly exogenous in the exogenous growth model Granger-causality test results show unequivocally that there is no evidence that TFP for both models precede infrastructure expenditures not being preceded by it. On the contrary, we find some evidence that infras- tructure investment precedes TFP. Our estimated impact of infrastructure on TFP lay rougbly in the interval (0.19, 0.27).
Resumo:
Initial endogenous growth models emphasized the importance of external effects and increasing retums in explaining growth. Empirically, this hypothesis can be confumed if the coefficient of physical capital per hour is unity in the aggregate production function. Previous estimates using time series data rejected this hypothesis, although cross-country estimates did nol The problem lies with the techniques employed, which are unable to capture low-frequency movements of high-frequency data. Using cointegration, new time series evidence confum the theory and conform to cross-country evidence. The implied Solow residual, which takes into account externaI effects to aggregate capital, has its behavior analyzed. The hypothesis that it is explained by government expenditures on infrasttucture is confIrmed. This suggests a supply-side role for government affecting productivity.
Resumo:
It is well known that cointegration between the level of two variables (e.g. prices and dividends) is a necessary condition to assess the empirical validity of a present-value model (PVM) linking them. The work on cointegration,namelyon long-run co-movements, has been so prevalent that it is often over-looked that another necessary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal to the past. This amounts to investigate whether short-run co-movememts steming from common cyclical feature restrictions are also present in such a system. In this paper we test for the presence of such co-movement on long- and short-term interest rates and on price and dividend for the U.S. economy. We focuss on the potential improvement in forecasting accuracies when imposing those two types of restrictions coming from economic theory.
Resumo:
This paper has two original contributions. First, we show that the present value model (PVM hereafter), which has a wide application in macroeconomics and fi nance, entails common cyclical feature restrictions in the dynamics of the vector error-correction representation (Vahid and Engle, 1993); something that has been already investigated in that VECM context by Johansen and Swensen (1999, 2011) but has not been discussed before with this new emphasis. We also provide the present value reduced rank constraints to be tested within the log-linear model. Our second contribution relates to forecasting time series that are subject to those long and short-run reduced rank restrictions. The reason why appropriate common cyclical feature restrictions might improve forecasting is because it finds natural exclusion restrictions preventing the estimation of useless parameters, which would otherwise contribute to the increase of forecast variance with no expected reduction in bias. We applied the techniques discussed in this paper to data known to be subject to present value restrictions, i.e. the online series maintained and up-dated by Shiller. We focus on three different data sets. The fi rst includes the levels of interest rates with long and short maturities, the second includes the level of real price and dividend for the S&P composite index, and the third includes the logarithmic transformation of prices and dividends. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to them. Moreover, imposing short-run restrictions produce forecast winners 70% of the time for target variables of PVMs and 63.33% of the time when all variables in the system are considered.
Resumo:
Using a sequence of nested multivariate models that are VAR-based, we discuss different layers of restrictions imposed by present-value models (PVM hereafter) on the VAR in levels for series that are subject to present-value restrictions. Our focus is novel - we are interested in the short-run restrictions entailed by PVMs (Vahid and Engle, 1993, 1997) and their implications for forecasting. Using a well-known database, kept by Robert Shiller, we implement a forecasting competition that imposes different layers of PVM restrictions. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to the unrestricted VAR. Moreover, imposing short-run restrictions produces forecast winners 70% of the time for the target variables of PVMs and 63.33% of the time when all variables in the system are considered.
Resumo:
Researchers often rely on the t-statistic to make inference on parameters in statistical models. It is common practice to obtain critical values by simulation techniques. This paper proposes a novel numerical method to obtain an approximately similar test. This test rejects the null hypothesis when the test statistic islarger than a critical value function (CVF) of the data. We illustrate this procedure when regressors are highly persistent, a case in which commonly-used simulation methods encounter dificulties controlling size uniformly. Our approach works satisfactorily, controls size, and yields a test which outperforms the two other known similar tests.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Box-Cox transformation is a technique mostly utilized to turn the probabilistic distribution of a time series data into approximately normal. And this helps statistical and neural models to perform more accurate forecastings. However, it introduces a bias when the reversion of the transformation is conducted with the predicted data. The statistical methods to perform a bias-free reversion require, necessarily, the assumption of Gaussianity of the transformed data distribution, which is a rare event in real-world time series. So, the aim of this study was to provide an effective method of removing the bias when the reversion of the Box-Cox transformation is executed. Thus, the developed method is based on a focused time lagged feedforward neural network, which does not require any assumption about the transformed data distribution. Therefore, to evaluate the performance of the proposed method, numerical simulations were conducted and the Mean Absolute Percentage Error, the Theil Inequality Index and the Signal-to-Noise ratio of 20-step-ahead forecasts of 40 time series were compared, and the results obtained indicate that the proposed reversion method is valid and justifies new studies. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The scope of this paper was to analyze the association between homicides and public security indicators in Sao Paulo between 1996 and 2008, after monitoring the unemployment rate and the proportion of youths in the population. A time-series ecological study for 1996 and 2008 was conducted with Sao Paulo as the unit of analysis. Dependent variable: number of deaths by homicide per year. Main independent variables: arrest-incarceration rate, access to firearms, police activity. Data analysis was conducted using Stata. IC 10.0 software. Simple and multivariate negative binomial regression models were created. Deaths by homicide and arrest-incarceration, as well as police activity were significantly associated in simple regression analysis. Access to firearms was not significantly associated to the reduction in the number of deaths by homicide (p>0,05). After adjustment, the associations with both the public security indicators were not significant. In Sao Paulo the role of public security indicators are less important as explanatory factors for a reduction in homicide rates, after adjustment for unemployment rate and a reduction in the proportion of youths. The results reinforce the importance of socioeconomic and demographic factors for a change in the public security scenario in Sao Paulo.
Resumo:
The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.
Resumo:
Brazil is the largest sugarcane producer in the world and has a privileged position to attend to national and international market places. To maintain the high production of sugarcane, it is fundamental to improve the forecasting models of crop seasons through the use of alternative technologies, such as remote sensing. Thus, the main purpose of this article is to assess the results of two different statistical forecasting methods applied to an agroclimatic index (the water requirement satisfaction index; WRSI) and the sugarcane spectral response (normalized difference vegetation index; NDVI) registered on National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) satellite images. We also evaluated the cross-correlation between these two indexes. According to the results obtained, there are meaningful correlations between NDVI and WRSI with time lags. Additionally, the adjusted model for NDVI presented more accurate results than the forecasting models for WRSI. Finally, the analyses indicate that NDVI is more predictable due to its seasonality and the WRSI values are more variable making it difficult to forecast.
Resumo:
In the present work we perform an econometric analysis of the Tribal art market. To this aim, we use a unique and original database that includes information on Tribal art market auctions worldwide from 1998 to 2011. In Literature, art prices are modelled through the hedonic regression model, a classic fixed-effect model. The main drawback of the hedonic approach is the large number of parameters, since, in general, art data include many categorical variables. In this work, we propose a multilevel model for the analysis of Tribal art prices that takes into account the influence of time on artwork prices. In fact, it is natural to assume that time exerts an influence over the price dynamics in various ways. Nevertheless, since the set of objects change at every auction date, we do not have repeated measurements of the same items over time. Hence, the dataset does not constitute a proper panel; rather, it has a two-level structure in that items, level-1 units, are grouped in time points, level-2 units. The main theoretical contribution is the extension of classical multilevel models to cope with the case described above. In particular, we introduce a model with time dependent random effects at the second level. We propose a novel specification of the model, derive the maximum likelihood estimators and implement them through the E-M algorithm. We test the finite sample properties of the estimators and the validity of the own-written R-code by means of a simulation study. Finally, we show that the new model improves considerably the fit of the Tribal art data with respect to both the hedonic regression model and the classic multilevel model.
Resumo:
The thesis is concerned with local trigonometric regression methods. The aim was to develop a method for extraction of cyclical components in time series. The main results of the thesis are the following. First, a generalization of the filter proposed by Christiano and Fitzgerald is furnished for the smoothing of ARIMA(p,d,q) process. Second, a local trigonometric filter is built, with its statistical properties. Third, they are discussed the convergence properties of trigonometric estimators, and the problem of choosing the order of the model. A large scale simulation experiment has been designed in order to assess the performance of the proposed models and methods. The results show that local trigonometric regression may be a useful tool for periodic time series analysis.
Resumo:
Boston Harbor has had a history of poor water quality, including contamination by enteric pathogens. We conduct a statistical analysis of data collected by the Massachusetts Water Resources Authority (MWRA) between 1996 and 2002 to evaluate the effects of court-mandated improvements in sewage treatment. Motivated by the ineffectiveness of standard Poisson mixture models and their zero-inflated counterparts, we propose a new negative binomial model for time series of Enterococcus counts in Boston Harbor, where nonstationarity and autocorrelation are modeled using a nonparametric smooth function of time in the predictor. Without further restrictions, this function is not identifiable in the presence of time-dependent covariates; consequently we use a basis orthogonal to the space spanned by the covariates and use penalized quasi-likelihood (PQL) for estimation. We conclude that Enterococcus counts were greatly reduced near the Nut Island Treatment Plant (NITP) outfalls following the transfer of wastewaters from NITP to the Deer Island Treatment Plant (DITP) and that the transfer of wastewaters from Boston Harbor to the offshore diffusers in Massachusetts Bay reduced the Enterococcus counts near the DITP outfalls.