943 resultados para Multi-scheme ensemble prediction system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate prediction of storms is vital to the oil and gas sector for the management of their operations. An overview of research exploring the prediction of storms by ensemble prediction systems is presented and its application to the oil and gas sector is discussed. The analysis method used requires larger amounts of data storage and computer processing time than other more conventional analysis methods. To overcome these difficulties eScience techniques have been utilised. These techniques potentially have applications to the oil and gas sector to help incorporate environmental data into their information systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ozone and temperature profiles from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been assimilated, using three-dimensional variational assimilation, into a stratosphere troposphere version of the Met Office numerical weather-prediction system. Analyses are made for the month of September 2002, when there was an unprecedented split in the southern hemisphere polar vortex. The analyses are validated against independent ozone observations from sondes, limb-occultation and total column ozone satellite instruments. Through most of the stratosphere, precision varies from 5 to 15%, and biases are 15% or less of the analysed field. Problems remain in the vortex and below the 60 hPa. level, especially at the tropopause where the analyses have too much ozone and poor agreement with independent data. Analysis problems are largely a result of the model rather than the data, giving confidence in the MIPAS ozone retrievals, though there may be a small high bias in MIPAS ozone in the lower stratosphere. Model issues include an excessive Brewer-Dobson circulation, which results both from known problems with the tracer transport scheme and from the data assimilation of dynamical variables. The extreme conditions of the vortex split reveal large differences between existing linear ozone photochemistry schemes. Despite these issues, the ozone analyses are able to successfully describe the ozone hole split and compare well to other studies of this event. Recommendations are made for the further development of the ozone assimilation system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key aspect in designing an ecient decadal prediction system is ensuring that the uncertainty in the ocean initial conditions is sampled optimally. Here, we consider one strategy to address this issue by investigating the growth of optimal perturbations in the HadCM3 global climate model (GCM). More specically, climatically relevant singular vectors (CSVs) - the small perturbations which grow most rapidly for a specic initial condition - are estimated for decadal timescales in the Atlantic Ocean. It is found that reliable CSVs can be estimated by running a large ensemble of integrations of the GCM. Amplication of the optimal perturbations occurs for more than 10 years, and possibly up to 40 years. The identi ed regions for growing perturbations are found to be in the far North Atlantic, and these perturbations cause amplication through an anomalous meridional overturning circulation response. Additionally, this type of analysis potentially informs the design of future ocean observing systems by identifying the sensitive regions where small uncertainties in the ocean state can grow maximally. Although these CSVs are expensive to compute, we identify ways in which the process could be made more ecient in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the recently-developed mean–variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, an analysis is presented of the spatiotemporal dynamics of their perturbations, showing how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. In particular, a divide is seen between ensembles based on singular vectors or empirical orthogonal functions, and those based on bred vector, Ensemble Transform with Rescaling or Ensemble Kalman Filter techniques. Consideration is also given to the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. Finally, the use of the MVL technique to assist in selecting models for inclusion in a multi-model ensemble is discussed, and an experiment suggested to test its potential in this context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evidence provided by modelled assessments of future climate impact on flooding is fundamental to water resources and flood risk decision making. Impact models usually rely on climate projections from global and regional climate models (GCM/RCMs). However, challenges in representing precipitation events at catchment-scale resolution mean that decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs. Here the impacts on projected high flows of differing ensemble approaches and application of Model Output Statistics to RCM precipitation are evaluated while assessing climate change impact on flood hazard in the Upper Severn catchment in the UK. Various ensemble projections are used together with the HBV hydrological model with direct forcing and also compared to a response surface technique. We consider an ensemble of single-model RCM projections from the current UK Climate Projections (UKCP09); multi-model ensemble RCM projections from the European Union's FP6 ‘ENSEMBLES’ project; and a joint probability distribution of precipitation and temperature from a GCM-based perturbed physics ensemble. The ensemble distribution of results show that flood hazard in the Upper Severn is likely to increase compared to present conditions, but the study highlights the differences between the results from different ensemble methods and the strong assumptions made in using Model Output Statistics to produce the estimates of future river discharge. The results underline the challenges in using the current generation of RCMs for local climate impact studies on flooding. Copyright © 2012 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius-Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that, while such effects are likely small compared to other sources of uncertainty, models with large Arabian Sea cold SST biases suppress the range of potential outcomes for changes to future early monsoon rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the end of the 20th century, we can look back on a spectacular development of numerical weather prediction, which has, practically uninterrupted, been going on since the middle of the century. High-resolution predictions for more than a week ahead for any part of the globe are now routinely produced and anyone with an Internet connection can access many of these forecasts for anywhere in the world. Extended predictions for several seasons ahead are also being done — the latest El Niño event in 1997/1998 is an example of such a successful prediction. The great achievement is due to a number of factors including the progress in computational technology and the establishment of global observing systems, combined with a systematic research program with an overall strategy towards building comprehensive prediction systems for climate and weather. In this article, I will discuss the different evolutionary steps in this development and the way new scientific ideas have contributed to efficiently explore the computing power and in using observations from new types of observing systems. Weather prediction is not an exact science due to unavoidable errors in initial data and in the models. To quantify the reliability of a forecast is therefore essential and probably more so the longer the forecasts are. Ensemble prediction is thus a new and important concept in weather and climate prediction, which I believe will become a routine aspect of weather prediction in the future. The limit between weather and climate prediction is becoming more and more diffuse and in the final part of this article I will outline the way I think development may proceed in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A necessary condition for a good probabilistic forecast is that the forecast system is shown to be reliable: forecast probabilities should equal observed probabilities verified over a large number of cases. As climate change trends are now emerging from the natural variability, we can apply this concept to climate predictions and compute the reliability of simulated local and regional temperature and precipitation trends (1950–2011) in a recent multi-model ensemble of climate model simulations prepared for the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5). With only a single verification time, the verification is over the spatial dimension. The local temperature trends appear to be reliable. However, when the global mean climate response is factored out, the ensemble is overconfident: the observed trend is outside the range of modelled trends in many more regions than would be expected by the model estimate of natural variability and model spread. Precipitation trends are overconfident for all trend definitions. This implies that for near-term local climate forecasts the CMIP5 ensemble cannot simply be used as a reliable probabilistic forecast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article examines the potential to improve numerical weather prediction (NWP) by estimating upper and lower bounds on predictability by re-visiting the original study of Lorenz (1982) but applied to the most recent version of the European Centre for Medium Range Weather Forecasts (ECMWF) forecast system, for both the deterministic and ensemble prediction systems (EPS). These bounds are contrasted with an older version of the same NWP system to see how they have changed with improvements to the NWP system. The computations were performed for the earlier seasons of DJF 1985/1986 and JJA 1986 and the later seasons of DJF 2010/2011 and JJA 2011 using the 500-hPa geopotential height field. Results indicate that for this field, we may be approaching the limit of deterministic forecasting so that further improvements might only be obtained by improving the initial state. The results also show that predictability calculations with earlier versions of the model may overestimate potential forecast skill, which may be due to insufficient internal variability in the model and because recent versions of the model are more realistic in representing the true atmospheric evolution. The same methodology is applied to the EPS to calculate upper and lower bounds of predictability of the ensemble mean forecast in order to explore how ensemble forecasting could extend the limits of the deterministic forecast. The results show that there is a large potential to improve the ensemble predictions, but for the increased predictability of the ensemble mean, there will be a trade-off in information as the forecasts will become increasingly smoothed with time. From around the 10-d forecast time, the ensemble mean begins to converge towards climatology. Until this point, the ensemble mean is able to predict the main features of the large-scale flow accurately and with high consistency from one forecast cycle to the next. By the 15-d forecast time, the ensemble mean has lost information with the anomaly of the flow strongly smoothed out. In contrast, the control forecast is much less consistent from run to run, but provides more detailed (unsmoothed) but less useful information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window”, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following trends in operational weather forecasting, where ensemble prediction systems (EPS) are now increasingly the norm, flood forecasters are beginning to experiment with using similar ensemble methods. Most of the effort to date has focused on the substantial technical challenges of developing coupled rainfall-runoff systems to represent the full cascade of uncertainties involved in predicting future flooding. As a consequence much less attention has been given to the communication and eventual use of EPS flood forecasts. Drawing on interviews and other research with operational flood forecasters from across Europe, this paper highlights a number of challenges to communicating and using ensemble flood forecasts operationally. It is shown that operational flood forecasters understand the skill, operational limitations, and informational value of EPS products in a variety of different and sometimes contradictory ways. Despite the efforts of forecasting agencies to design effective ways to communicate EPS forecasts to non-experts, operational flood forecasters were often skeptical about the ability of forecast recipients to understand or use them appropriately. It is argued that better training and closer contacts between operational flood forecasters and EPS system designers can help ensure the uncertainty represented by EPS forecasts is represented in ways that are most appropriate and meaningful for their intended consumers, but some fundamental political and institutional challenges to using ensembles, such as differing attitudes to false alarms and to responsibility for management of blame in the event of poor or mistaken forecasts are also highlighted. Copyright © 2010 Royal Meteorological Society.