896 resultados para Moving Pole-to-Vehicle Impact Tests.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preformed structural reinforcements have shown good performance in crash tests, where the great advantage is their weight. These reinforcements are designed with the aim of increasing the rigidity of regions with large deformations, thus stabilising sections of the vehicle that work as load path during impact. The objective of this work is to show the application of structural reinforcements made of polymeric material PA66 in the field of vehicle safety, through finite element simulations. Simulations of frontal impact at 50 km/h and in ODB (offset deformable barrier) at 57 km/h configurations (standards such as ECE R-94 and ECE R-12) were performed in the software LS-DYNA R (R) and MADYMO (R). The simulations showed that the use of polymeric reinforcements leads to a 70% reduction in A-pillar intrusion, a 65% reduction in the displacement of the steering column and a 59% reduction in the deformation in the region of the occupant legs and feet. The level of occupant injuries was analysed by MADYMO (R) software, and a reduction of 23.5% in the chest compression and 80% in the tibia compression were verified. According to the standard, such conditions lead to an improvement in the occupant safety in a vehicle collision event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much is known about pedestrian behaviour and crash risk in developed countries. In contrast, the literature on pedestrian crash risk in developing countries reveals wide gaps in knowledge and understanding, and a comprehensive assessment is lacking. In particular, pedestrian behaviour in developing countries is fundamentally different in comparison to developed countries, and is influenced by a variety of less well understood contributing factors, leading to difficulty in modelling and predicting pedestrian crash risk and in turn identifying effective safety countermeasures. This paper provides a comprehensive synthesis of the factors known to influence pedestrian crash risk in developing countries, then focuses on Ethiopia as a specific example. The paper identifies where critical gaps in knowledge exist regarding pedestrian crash risk and associated behaviour in developing countries--a set of knowledge gaps which collectively are significant. The paper concludes by articulating a critical research path moving forward, with the aim to achieve an improved understanding of developing country pedestrian crash risk, and an ultimate goal of identifying effective pedestrian safety countermeasures suited to the unique challenges faced by transport system managers in developing countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Passenger Vehicle Research, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Safety Design Division, Mclean, Va.