999 resultados para Mineral investment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The call for enhanced financial literacy amongst consumers is a global phenomenon, driven by the growing complexity of financial markets and products, and government concerns about the affordability of supporting an ageing population. Worldwide, defined benefit pensions are giving way to the risk and uncertainty of defined contribution superannuation/pension funds where fund members now make choices and decisions that were once made on their behalf. An important prerequisite for informed financial decision-making is adequate financial knowledge and skills to make competent investment decisions. This paper reports the findings of an online survey of the members of a large Australian public sector-based superannuation fund and shows that although respondents generally understand basic financial matters, on average, their understanding of investments concepts, such as the relationship between risk and returns, is inadequate. These results highlight the need for education programs focusing specifically on developing fund members’ investment knowledge and skills to facilitate informed retirement savings decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral tsumebite Pb2Cu(PO4)(SO4)(OH), a copper phosphate-sulfate hydroxide of the brackebuschite group has been characterised by Raman and infrared spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A2B(XO4)(OH,H2O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu2+,Fe2+, Fe3+, Mn2+, Mn3+, Zn and XO4 may be AsO4, PO4, SO4,VO4. Bands are assigned to the stretching and bending modes of PO43- and HOPO3 units. Hydrogen bond distances are calculated based upon the position of the OH stretching vibrations and range from 2.759 Å to 3.205 Å. This range of hydrogen bonding contributes to the stability of the mineral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newberyite Mg(PO3OH)•3H2O is a mineral found in caves such as from Moorba cave, Jurien Bay, Western Australia, the Skipton Lava tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura , Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of ‘cave’ minerals. The intense sharp band at 982 cm-1 is assigned to the PO43- ν1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm-1 are assigned to the PO43- ν3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm-1 are attributed to the PO43- ν4 bending modes. An intense Raman band for newberyite at 398 cm-1 with a shoulder band at 413 cm-1 is assigned to the PO43- ν2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728Å (3267 cm-1), 2.781Å (3374cm-1), 2.868Å (3479 cm-1), and 2.918Å (3515 cm-1). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral stercorite H(NH4)Na(PO4)·4H2O. The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in the South of Western Australia. These caves have been in existence for eons of time and have been dated at more than 550 million years old. The mineral is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm−1 defines the presence of phosphate in the mineral. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm−1. Raman spectroscopy shows the mineral is based upon the phosphate anion and not the hydrogen phosphate anion. Raman and infrared bands are found and assigned to PO43−, H2O, OH and NH stretching vibrations. The detection of stercorite by Raman spectroscopy shows that the mineral can be readily determined; as such the application of a portable Raman spectrometer in a ‘cave’ situation enables the detection of minerals, some of which may remain to be identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral sanjuanite Al2(PO4)(SO4)(OH)•9H2O has been characterised by Raman spectroscopy complimented by infrared spectroscopy. The mineral is characterised by an intense Raman band at 984 cm-1, assigned to the (PO4)3- ν1 symmetric stretching mode. A shoulder band at 1037 cm-1 is attributed to the (SO4)2- ν1 symmetric stretching mode. Two Raman bands observed at 1102 and 1148 cm-1 are assigned to (PO4)3- and (SO4)2- ν3 antisymmetric stretching modes. Multiple bands provide evidence for the reduction in symmetry of both anions. This concept is supported by the multiple sulphate and phosphate bending modes. Raman spectroscopy shows that there are more than one non-equivalent water molecules in the sanjuanite structure. There is evidence that structural disorder exists, shown by the complex set of overlapping bands in the Raman and infrared spectra. At least two types of water are identified with different hydrogen bond strengths. The involvement of water in the sanjuanite structure is essential for the mineral stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman spectrum of bukovskýite, Fe3+2(OH)(SO4)(AsO4)•7H2O has been studied and compared with the Raman spectrum of an amorphous gel containing specifically Fe, As and S elements and is understood as an intermediate product in the formation of bukovskýite. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations and librational modes of hydrogen bonded water molecules, stretching and bending vibrations of hydrogen bonded (OH)- ions and Fe3+-(O,OH) units. Approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, observed bands are sharp, the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of  H2O bending vibration in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared with those in bukovskýite.