1000 resultados para Mineração de dados na educação


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O setor supermercadista sofreu grandes alterações nos últimos anos, principalmente com o avanço das tecnologias, a competição, a concentração e algumas insuficiências em seus processos. Estes e outros fatores favoreceram ao surgimento do movimento de ECR (Resposta de Consumidor Eficiente) que procura criar um relacionamento mais forte entre indústria e varejo através de novas visões para suas estratégias operacionais. A evolução das tecnologias de informação permitiram ao setor varejista gerar uma maior volume de dados a partir, principalmente, de seus check-outs. Entretanto, estes dados nem sempre são armazenados de forma correta ou utilizados de forma a se aproveitar a plenitude das informações neles contidas. O processo de transformar os dados em informação e conhecimento vem evoluindo constantemente. Uma das atuais metodologias de trabalhar dados é o Data Mining ou Mineração de Dados, que pode ser descrito como sendo uma variedade de ferramentas e estratégias que processam dados aumentando a utilidade destes em bancos de dados. Este trabalho analisa através de um estudo multicaso exploratório na região de Ribeirão Preto, no interior de São Paulo, a avaliação da capacidade do uso da tecnologia Data Mining para o fortalecimento do movimento ECR, principalmente em pequenos e médios varejistas e indústrias alimentícias, no sentido de oferecer a estes um diferencial de negociação para formação de alianças estratégias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A anotação geográfica de documentos consiste na adoção de metadados para a identificação de nomes de locais e a posição de suas ocorrências no texto. Esta informação é útil, por exemplo, para mecanismos de busca. A partir dos topônimos mencionados no texto é possível identificar o contexto espacial em que o assunto do texto está inserido, o que permite agrupar documentos que se refiram a um mesmo contexto, atribuindo ao documento um escopo geográfico. Esta Dissertação de Mestrado apresenta um novo método, batizado de Geofier, para determinação do escopo geográfico de documentos. A novidade apresentada pelo Geofier é a possibilidade da identificação do escopo geográfico de um documento por meio de classificadores de aprendizagem de máquina treinados sem o uso de um gazetteer e sem premissas quanto à língua dos textos analisados. A Wikipédia foi utilizada como fonte de um conjunto de documentos anotados geograficamente para o treinamento de uma hierarquia de Classificadores Naive Bayes e Support Vector Machines (SVMs). Uma comparação de desempenho entre o Geofier e uma reimplementação do sistema Web-a-Where foi realizada em relação à determinação do escopo geográfico dos textos da Wikipédia. A hierarquia do Geofier foi treinada e avaliada de duas formas: usando topônimos do mesmo gazetteer que o Web-a-Where e usando n-gramas extraídos dos documentos de treinamento. Como resultado, o Geofier manteve desempenho superior ao obtido pela reimplementação do Web-a-Where.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Devido às tendências de crescimento da quantidade de dados processados e a crescente necessidade por computação de alto desempenho, mudanças significativas estão acontecendo no projeto de arquiteturas de computadores. Com isso, tem-se migrado do paradigma sequencial para o paralelo, com centenas ou milhares de núcleos de processamento em um mesmo chip. Dentro desse contexto, o gerenciamento de energia torna-se cada vez mais importante, principalmente em sistemas embarcados, que geralmente são alimentados por baterias. De acordo com a Lei de Moore, o desempenho de um processador dobra a cada 18 meses, porém a capacidade das baterias dobra somente a cada 10 anos. Esta situação provoca uma enorme lacuna, que pode ser amenizada com a utilização de arquiteturas multi-cores heterogêneas. Um desafio fundamental que permanece em aberto para estas arquiteturas é realizar a integração entre desenvolvimento de código embarcado, escalonamento e hardware para gerenciamento de energia. O objetivo geral deste trabalho de doutorado é investigar técnicas para otimização da relação desempenho/consumo de energia em arquiteturas multi-cores heterogêneas single-ISA implementadas em FPGA. Nesse sentido, buscou-se por soluções que obtivessem o melhor desempenho possível a um consumo de energia ótimo. Isto foi feito por meio da combinação de mineração de dados para a análise de softwares baseados em threads aliadas às técnicas tradicionais para gerenciamento de energia, como way-shutdown dinâmico, e uma nova política de escalonamento heterogeneity-aware. Como principais contribuições pode-se citar a combinação de técnicas de gerenciamento de energia em diversos níveis como o nível do hardware, do escalonamento e da compilação; e uma política de escalonamento integrada com uma arquitetura multi-core heterogênea em relação ao tamanho da memória cache L1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A análise de sentimentos é uma ferramenta com grande potencial, podendo ser aplicada em vários contextos. Esta dissertação tem com o objetivo analisar a viabilidade da aplicação da técnica numa base capturada do site de reclamações mais popular do Brasil, com a aplicação de técnicas de processamento de linguagem natural e de aprendizagem de máquinas é possível identificar padrões na satisfação ou insatisfação dos consumidores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Educational Data Mining is an application domain in artificial intelligence area that has been extensively explored nowadays. Technological advances and in particular, the increasing use of virtual learning environments have allowed the generation of considerable amounts of data to be investigated. Among the activities to be treated in this context exists the prediction of school performance of the students, which can be accomplished through the use of machine learning techniques. Such techniques may be used for student’s classification in predefined labels. One of the strategies to apply these techniques consists in their combination to design multi-classifier systems, which efficiency can be proven by results achieved in other studies conducted in several areas, such as medicine, commerce and biometrics. The data used in the experiments were obtained from the interactions between students in one of the most used virtual learning environments called Moodle. In this context, this paper presents the results of several experiments that include the use of specific multi-classifier systems systems, called ensembles, aiming to reach better results in school performance prediction that is, searching for highest accuracy percentage in the student’s classification. Therefore, this paper presents a significant exploration of educational data and it shows analyzes of relevant results about these experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soft skills and teamwork practices were identi ed as the main de ciencies of recent graduates in computer courses. This issue led to a realization of a qualitative research aimed at investigating the challenges faced by professors of those courses in conducting, monitoring and assessing collaborative software development projects. Di erent challenges were reported by teachers, including di culties in the assessment of students both in the collective and individual levels. In this context, a quantitative research was conducted with the aim to map soft skill of students to a set of indicators that can be extracted from software repositories using data mining techniques. These indicators are aimed at measuring soft skills, such as teamwork, leadership, problem solving and the pace of communication. Then, a peer assessment approach was applied in a collaborative software development course of the software engineering major at the Federal University of Rio Grande do Norte (UFRN). This research presents a correlation study between the students' soft skills scores and indicators based on mining software repositories. This study contributes: (i) in the presentation of professors' perception of the di culties and opportunities for improving management and monitoring practices in collaborative software development projects; (ii) in investigating relationships between soft skills and activities performed by students using software repositories; (iii) in encouraging the development of soft skills and the use of software repositories among software engineering students; (iv) in contributing to the state of the art of three important areas of software engineering, namely software engineering education, educational data mining and human aspects of software engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soft skills and teamwork practices were identi ed as the main de ciencies of recent graduates in computer courses. This issue led to a realization of a qualitative research aimed at investigating the challenges faced by professors of those courses in conducting, monitoring and assessing collaborative software development projects. Di erent challenges were reported by teachers, including di culties in the assessment of students both in the collective and individual levels. In this context, a quantitative research was conducted with the aim to map soft skill of students to a set of indicators that can be extracted from software repositories using data mining techniques. These indicators are aimed at measuring soft skills, such as teamwork, leadership, problem solving and the pace of communication. Then, a peer assessment approach was applied in a collaborative software development course of the software engineering major at the Federal University of Rio Grande do Norte (UFRN). This research presents a correlation study between the students' soft skills scores and indicators based on mining software repositories. This study contributes: (i) in the presentation of professors' perception of the di culties and opportunities for improving management and monitoring practices in collaborative software development projects; (ii) in investigating relationships between soft skills and activities performed by students using software repositories; (iii) in encouraging the development of soft skills and the use of software repositories among software engineering students; (iv) in contributing to the state of the art of three important areas of software engineering, namely software engineering education, educational data mining and human aspects of software engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a highly connected society, avid for information and technological innovations, constantly changing the consumption patterns, the brand management strategy occupies a growing place. Allied with the increased competition among companies, the brand that can differentiate in consumers’ minds becomes strong. This aspect is even more important in the service industry, where the consumer experience, the definition and support of the brand’s values are vital to the continued strength of both your identity and image. These aspects are seen as a process of communication in which the way the image is developed in the minds of consumers comes from how identity is constructed and transmitted to them (DE CHERNATONY; DRURY; SEGAL-HORN, 2004). Considering the dynamic and complex scenario, this study aims to identify and analyze the possible convergences or divergences between the identity built by the organization and the brand image perceived by consumers of a telecommunications services company. To achieve this objective, the model proposed by De Chernatony, Drury and Segal-Horn (2004) was used as a theoretical basis, which addresses the transformation of identity in brand image, specifically under the perspective of Pontes (2009). For him, customers are more motivated to buy and consume products that they believe that take a complementary image that they have of themselves, and proposes the existence of multiple selves: the perceived, which refers to the employees and the organization’s management opinions on the brand; the ideal, which deals with effective brand identity thought by its leaders, the vision of what it should be; social, which shows how managers think that consumers see it; the apparent, formed by the image of the brand by customers; and finally the real self, that would be an integrated composite of all of these visions. In this regard, a case study was made in a telecommunications company with regional actions, from a qualitative and quantitative approach. It was identified the company’s vision through semi-structured interviews with marketing managers and analysis of documents related to the brand strategy. The point of view of consumers was addressed for text mining techniques applied to internal unstructured data coming from the collection of posts made on Facebook and Twitter, related to the brand, and customer interaction with the company through these social networks. The results showed the importance of the concepts of identity and brand image, and how they are interrelated. Moreover, the qualitative analysis it was shown that the vision of marketing executives is quite close and in line with the Brand Book, showing that there is a cohesive and well disseminated speech internally in the organization. On the other hand, when evaluating the customer's point of view there was no specific comments on the brand, and it was not possible to identify the evaluation of Algar Telecom image by consumers. Nevertheless, other relevant aspects could be identified for the consolidation of the brand identity, as the occurrence of a number of complaints, especially regarding the internet as well as the concern of customers for the quality of the provision of services.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The large number of opinions generated by online users made the former “word of mouth” find its way to virtual world. In addition to be numerous, many of the useful reviews are mixed with a large number of fraudulent, incomplete or duplicate reviews. However, how to find the features that influence on the number of votes received by an opinion and find useful reviews? The literature on opinion mining has several studies and techniques that are able to analyze of properties found in the text of reviews. This paper presents the application of a methodology for evaluation of usefulness of opinions with the aim of identifying which characteristics have more influence on the amount of votes: basic utility (e.g. ratings about the product and/or service, date of publication), textual (e.g.size of words, paragraphs) and semantics (e.g., the meaning of the words of the text). The evaluation was performed in a database extracted from TripAdvisor with opinionsabout hotels written in Portuguese. Results show that users give more attention to recent opinions with higher scores for value and location of the hotel and with lowest scores for sleep quality and service and cleanliness. Texts with positive opinions, small words, few adjectives and adverbs increase the chances of receiving more votes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho objetivou realizar a sistematização e análise das informações disponíveis na literatura sobre técnicas de produção de mudas de seis espécies florestais nativas e exóticas no Bioma Amazônia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clustering data streams is an important task in data mining research. Recently, some algorithms have been proposed to cluster data streams as a whole, but just few of them deal with multivariate data streams. Even so, these algorithms merely aggregate the attributes without touching upon the correlation among them. In order to overcome this issue, we propose a new framework to cluster multivariate data streams based on their evolving behavior over time, exploring the correlations among their attributes by computing the fractal dimension. Experimental results with climate data streams show that the clusters' quality and compactness can be improved compared to the competing method, leading to the thoughtfulness that attributes correlations cannot be put aside. In fact, the clusters' compactness are 7 to 25 times better using our method. Our framework also proves to be an useful tool to assist meteorologists in understanding the climate behavior along a period of time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Digital soil mapping is an alternative for the recognition of soil classes in areas where pedological surveys are not available. The main aim of this study was to obtain a digital soil map using artificial neural networks (ANN) and environmental variables that express soillandscape relationships. This study was carried out in an area of 11,072 ha located in the Barra Bonita municipality, state of São Paulo, Brazil. A soil survey was obtained from a reference area of approximately 500 ha located in the center of the area studied. With the mapping units identified together with the environmental variables elevation, slope, slope plan, slope profile, convergence index, geology and geomorphic surfaces, a supervised classification by ANN was implemented. The neural network simulator used was the Java NNS with the learning algorithm "back propagation." Reference points were collected for evaluating the performance of the digital map produced. The occurrence of soils in the landscape obtained in the reference area was observed in the following digital classification: medium-textured soils at the highest positions of the landscape, originating from sandstone, and clayey loam soils in the end thirds of the hillsides due to the greater presence of basalt. The variables elevation and slope were the most important factors for discriminating soil class through the ANN. An accuracy level of 82% between the reference points and the digital classification was observed. The methodology proposed allowed for a preliminary soil classification of an area not previously mapped using mapping units obtained in a reference area

Relevância:

50.00% 50.00%

Publicador:

Resumo:

O presente trabalho tem como objetivo descrever um Programa de Desenvolvimento oferecido pela Universidade Corporativa de empresa mineradora, com atuação em Vitória/ES, e compreender as possíveis relações deste Programa com o desenvolvimento das competências profissionais esperadas pela Organização. A Empresa Gama, que assim será identificada durante todo o trabalho, teve o início de sua Universidade Corporativa no ano de 2003, sob o propósito de transformar vidas desenvolvendo pessoas, e é vista pela Empresa Gama como fator importante para a geração de competitividade, para evolução nos negócios e aumento da sinergia organizacional. Dentre todos os Programas ofertados, opta-se pelo estudo do Programa “Trilha de Gestão e Liderança”, lançado em 2004, e voltado para a formação de gestores da Empresa Gama. Para a realização desta pesquisa qualitativa, foram entrevistados quatro Supervisores da Empresa Gama, que tiveram a oportunidade de participar da “Trilha de Gestão e Liderança”. Foram realizadas entrevistas semi-estruturadas e pesquisa documental para obtenção de dados. Opta-se pela Analise de Conteúdo como método de análise. Compreende-se que, para a Empresa Gama, o Programa “Trilha de Gestão e Liderança” é uma importante ferramenta para o desenvolvimento das competências esperadas pela organização. Contudo, não se trata da principal ferramenta, estando nítido que este desenvolvimento vai muito além dos Programas oferecidos por sua Universidade Corporativa.