845 resultados para Medial prefrontal cortex (mPFC)
Resumo:
Many prefrontal (PF) neurons convey information about both an object’s identity (what) and its location (where). To explore how they represent conjunctions of what and where, we explored the receptive fields of their mnemonic activity (i.e., their “memory fields”) by requiring monkeys to remember both an object and its location at many positions throughout a wide portion of central vision. Many PF neurons conveyed object information and had highly localized memory fields that emphasized the contralateral, but not necessarily foveal, visual field. These results indicate that PF neurons can simultaneously convey precise location and object information and thus may play a role in constructing a unified representation of a visual scene.
Resumo:
The relative abundance of alternatively spliced long (γ2L) and short (γ2S) mRNAs of the γ2 subunit of the γ-amino butyrate type A (GABAA) receptor was examined in dorsolateral prefrontal cortex of schizophrenics and matched controls by using in situ hybridization histochemistry and semiquantitative reverse transcription–PCR (RT-PCR) amplification. A cRNA probe identifying both mRNAs showed that the transcripts are normally expressed at moderately high levels in the prefrontal cortex. Consistent with previous studies, overall levels of γ2 transcripts in prefrontal cortex of brains from schizophrenics were reduced by 28.0%, although this reduction did not reach statistical significance. RT-PCR, performed under nonsaturating conditions on total RNA from the same blocks of tissue used for in situ hybridization histochemistry, revealed a marked reduction in the relative proportion of γ2S transcripts in schizophrenic brains compared with controls. In schizophrenics, γ2S transcripts had fallen to 51.7% (±7.9% SE; P < 0.0001) relative to control levels. Levels of γ2L transcripts showed only a small and nonsignificant reduction of 16.9% (±12.0% SE, P > 0.05). These findings indicate differential transcriptional regulation of two functionally distinct isoforms of one of the major GABAA receptor subunits in the prefrontal cortex of schizophrenics. The specific reduction in relative abundance of γ2S mRNAs and the associated relative increase in γ2L mRNAs should result in functionally less active GABAA receptors and have severe consequences for cortical integrative function.
Resumo:
A number of neuroimaging findings have been interpreted as evidence that the left inferior frontal gyrus (IFG) subserves retrieval of semantic knowledge. We provide a fundamentally different interpretation, that it is not retrieval of semantic knowledge per se that is associated with left IFG activity but rather selection of information among competing alternatives from semantic memory. Selection demands were varied across three semantic tasks in a single group of subjects. Functional magnetic resonance imaging signal in overlapping regions of left IFG was dependent on selection demands in all three tasks. In addition, the degree of semantic processing was varied independently of selection demands in one of the tasks. The absence of left IFG activity for this comparison counters the argument that the effects of selection can be attributed solely to variations in degree of semantic retrieval. Our findings suggest that it is selection, not retrieval, of semantic knowledge that drives activity in the left IFG.
Resumo:
A multistudy analysis of positron emission tomography data identified three right prefrontal and two left prefrontal cortical sites, as well as a region in the anterior cingulate gyrus, where neuronal activity is correlated with the maintenance of episodic memory retrieval mode (REMO), a basic and necessary condition of remembering past experiences. The right prefrontal sites were near the frontal pole [Brodmann's area (BA) 10], frontal operculum (BA 47/45), and lateral dorsal area (BA 8/9). The two left prefrontal sites were homotopical with the right frontal pole and opercular sites. The same kinds of REMO sites were not observed in any other cerebral region. Many previous functional neuroimaging studies of episodic memory retrieval have reported activations near the frontal REMO sites identified here, although their function has not been clear. Many of these, too, probably have signaled their involvement in REMO. We propose that REMO activations largely if not entirely account for the frontal hemispheric asymmetry of retrieval as described by the original hemispheric encoding retrieval asymmetry model.
Resumo:
Human ability to switch from one cognitive task to another involves both endogenous preparation without an external stimulus and exogenous adjustment in response to the external stimulus. In an event-related functional MRI study, participants performed pairs of two tasks that are either the same (task repetition) or different (task switch) from each other. On half of the trials, foreknowledge about task repetition or task switch was available. On the other half, it was not. Endogenous preparation seems to involve lateral prefrontal cortex (BA 46/45) and posterior parietal cortex (BA 40). During preparation, higher activation increases in inferior lateral prefrontal cortex and superior posterior parietal cortex were associated with foreknowledge than with no foreknowledge. Exogenous adjustment seems to involve superior prefrontal cortex (BA 8) and posterior parietal cortex (BA 39/40) in general. During a task switch with no foreknowledge, activations in these areas were relatively higher than during a task repetition with no foreknowledge. These results suggest that endogenous preparation and exogenous adjustment for a task switch may be independent processes involving different brain areas.
Resumo:
Typical neuroleptic drugs elicit their antipsychotic effects mainly by acting as antagonists at dopamine D2 receptors. Much of this activity is thought to occur in the cerebral cortex, where D2 receptors are found largely in inhibitory GABAergic neurons. Here we confirm this localization at the electron microscopic level, but additionally show that a subset of cortical interneurons with low or undetectable expression of D2 receptor isoforms are surrounded by astrocytic processes that strongly express D2 receptors. Ligand binding of isolated astrocyte preparations indicate that cortical astroglia account for approximately one-third of the total D2 receptor binding sites in the cortex, a proportion that we found conserved among rodent, monkey, and human tissues. Further, we show that the D2 receptor-specific agonist, quinpirole, can induce Ca2+ elevation in isolated cortical astrocytes in a pharmacologically reversible manner, thus implicating this receptor in the signaling mechanisms by which astrocytes communicate with each other as well as with neurons. The discovery of D2 receptors in astrocytes with a selective anatomical relationship to interneurons represents a neuron/glia substrate for cortical dopamine action in the adult cerebral cortex and a previously unrecognized site of action for antipsychotic drugs with affinities at the D2 receptor.
Resumo:
This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences.
Resumo:
The selective activation of the prefrontal cortical dopamine system by mild stress can be mimicked by anxiogenic beta-carbolines such as FG7142. To investigate the functional relevance of elevated levels of dopamine turnover in the prefrontal cortex, the current study examined the effects of FG7142 on the performance of spatial working memory tasks in the rat and monkey. FG7142 selectively increased prefrontal cortical dopamine turnover in rats and significantly impaired performance on spatial working memory tasks in both rats and monkeys. Spatial discrimination, a task with similar motor and motivational demands (rats), or delayed response performance following zero-second delays (monkeys) was unaffected by FG7142. Further, biochemical analysis in rats revealed a significant positive correlation between dopamine turnover in the prefrontal cortex and cognitive impairment on the delayed alternation task. The cognitive deficits in both rats and monkeys were prevented by pretreatment with the benzodiazepine receptor antagonist, RO15-1788, which blocked the increase in dopamine turnover and by the dopamine receptor antagonists, haloperidol, clozapine, and SCH23390. These findings indicate that excessive dopamine activity in the prefrontal cortex is detrimental to cognitive functions mediated by the prefrontal cortex.
Resumo:
Action selection and organization are very complex processes that need to exploit contextual information and the retrieval of previously memorized information, as well as the integration of these different types of data. On the basis of anatomical connection with premotor and parietal areas involved in action goal coding, and on the data about the literature it seems appropriate to suppose that one of the most candidate involved in the selection of neuronal pools for the selection and organization of intentional actions is the prefrontal cortex. We recorded single ventrolateral prefrontal (VLPF) neurons activity while monkeys performed simple and complex manipulative actions aimed at distinct final goals, by employing a modified and more strictly controlled version of the grasp-to-eat(a food pellet)/grasp-to-place(an object) paradigm used in previous studies on parietal (Fogassi et al., 2005) and premotor neurons (Bonini et al., 2010). With this task we have been able both to evaluate the processing and integration of distinct (visual and auditory) contextual sequentially presented information in order to select the forthcoming action to perform and to examine the possible presence of goal-related activity in this portion of cortex. Moreover, we performed an observation task to clarify the possible contribution of VLPF neurons to the understanding of others’ goal-directed actions. Simple Visuo Motor Task (sVMT). We found four main types of neurons: unimodal sensory-driven, motor-related, unimodal sensory-and-motor, and multisensory neurons. We found a substantial number of VLPF neurons showing both a motor-related discharge and a visual presentation response (sensory-and-motor neurons), with remarkable visuo-motor congruence for the preferred target. Interestingly the discharge of multisensory neurons reflected a behavioural decision independently from the sensory modality of the stimulus allowing the monkey to make it: some encoded a decision to act/refraining from acting (the majority), while others specified one among the four behavioural alternatives. Complex Visuo Motor Task (cVMT). The cVMT was similar to the sVMT, but included a further grasping motor act (grasping a lid in order to remove it, before grasping the target) and was run in two modalities: randomized and in blocks. Substantially, motor-related and sensory-and-motor neurons tested in the cVMTrandomized were activated already during the first grasping motor act, but the selectivity for one of the two graspable targets emerged only during the execution of the second grasping. In contrast, when the cVMT was run in block, almost all these neurons not only discharged during the first grasping motor act, but also displayed the same target selectivity showed in correspondence of the hand contact with the target. Observation Task (OT). A great part of the neurons active during the OT showed a firing rate modulation in correspondence with the action performed by the experimenter. Among them, we found neurons significantly activated during the observation of the experimenter’s action (action observation-related neurons) and neurons responding not only to the action observation, but also to the presented cue stimuli (sensory-and-action observation-related neurons. Among the neurons of the first set, almost the half displayed a target selectivity, with a not clear difference between the two presented targets; Concerning to the second neuronal set, sensory-and-action related neurons, we found a low target selectivity and a not strictly congruence between the selectivity exhibited in the visual response and in the action observation.
Resumo:
Cognitive Reappraisal (CR) is a central component of Cognitive Behavioral Therapy for adolescent depression. Yet, previous research indicates that a brain region highly associated with successful CR in adults, the Prefrontal Cortex (PFC), is not fully developed until early adulthood. Thus, there is growing concern that CBT interventions directed at building CR abilities in depressed teens might be constrained by PFC immaturity. However, CR is an effective strategy for regulating affect. The current study evaluated an intervention aimed at enhancing CR performance through PFC “warm up” with a working memory task. Additionally, the study examined moderators of intervention response, as well as cognitive correlates of self-reported CR use. Participants included 48 older adolescents (mean age=19.1, 89% female) with elevated symptoms of depression who were randomly assigned to a lab-based WM or control activity followed by a CR task. Overall, results failed to support the effectiveness of “warm up” to augment CR performance. However, current level of depression predicted negative bias and sadness ratings after CR instructions, and this effect was qualified by an interaction with condition. The moderator analysis showed that depressive symptoms interacted with condition such that in the control condition, participants with higher depressive symptoms had significantly lower negative bias scores than individuals with lower depressive symptoms, but this pattern was not found in the experimental condition. Contrary to hypotheses, history of depression did not moderate treatment response. Additional analyses explored alternative explanations for the lack of intervention effects. There was some evidence to suggest that the WM task was frustrating and cognitively taxing. However, irritation scores and overall WM task accuracy did not predict subsequent CR performance. Lastly, multiple cognitive variables emerged as correlates of self-reported CR use, with cognitive flexibility contributing unique variance to self-reported CR use. Results pointed to new directions for improving CR performance among youth with elevated symptoms of depression.
Resumo:
Typically, cognitive abilities of humans have been attributed to their greatly expanded cortical mantle, granular prefrontal cortex (gPFC) in particular. Recently we have demonstrated systematic differences in microstructure of gPFC in different species. Specifically, pyramidal cells in adult human gPFC are considerably more spinous than those in the gPFC of the macaque monkey, which are more spinous than those in the gPFC of marmoset and owl monkeys. As most cortical dendritic spines receive at least one excitatory input, pyramidal cells in these different species putatively receive different numbers of inputs. These differences in the gPFC pyramidal cell phenotype may be of fundamental importance in determining the functional characteristics of prefrontal circuitry and hence the cognitive styles of the different species. However, it remains unknown as to why the gPFC pyramidal cell phenotype differs between species. Differences could be attributed to, among other things, brain size, relative size of gPFC, or the lineage to which the species belong. Here we investigated pyramidal cells in the dorsolateral gPFC of the prosimian galago to extend the basis for comparison. We found these cells to be less spinous than those in human, macaque, and marmoset. (c) 2005 Wiley-Liss, Inc.
Resumo:
Background: Alcoholism is commonly associated with chronic smoking. A number of gene expression profiles of regions within the human mesocorticolimbic system have identified potential alcohol-sensitive genes; however, the influence of smoking on these changes was not taken into account. This study addressed the impact of alcohol and smoking on the expression of 4 genes, previously identified as alcoholism-sensitive. in the human prefrontal cortex (PFC). Methods: mRNA expression of apolipoprotein D, tissue inhibitor of the metalloproteinase 3, high-affinity glial glutamate transporter and midkine, was measured in the PFC of alcoholic Subjects and controls with and without smoking comorbidity using real-time polymerase chain reaction. Results: The results show that alcohol affects transcription of some of these genes. Additionally, smoking has a marked influence on gene expression. Conclusion: This study emphasizes the need for careful case selection in future gene expression studies to delineate the adaptive molecular process associated with smoking and alcohol.
Specializations of the granular prefrontal cortex of primates: Implications for cognitive processing
Resumo:
The biological underpinnings of human intelligence remain enigmatic. There remains the greatest confusion and controversy regarding mechanisms that enable humans to conceptualize, plan, and prioritize, and why they are set apart from other animals in their cognitive abilities. Here we demonstrate that the basic neuronal building block of the cerebral cortex, the pyramidal cell, is characterized by marked differences in structure among primate species. Moreover, comparison of the complexity of neuron structure with the size of the cortical area/region in which the cells are located revealed that trends in the granular prefrontal cortex (gPFC) were dramatically different to those in visual cortex. More specifically, pyramidal cells in the gPFC of humans had a disproportionately high number of spines. As neuron structure determines both its biophysical properties and connectivity, differences in the complexity in dendritic structure observed here endow neurons with different computational abilities. Furthermore, cortical circuits composed of neurons with distinguishable morphologies will likely be characterized by different functional capabilities. We propose that 1. circuitry in V1, V2, and gPFC within any given species differs in its functional capabilities and 2. there are dramatic differences in the functional capabilities of gPFC circuitry in different species, which are central to the different cognitive styles of primates. In particular, the highly branched, spinous neurons in the human gPFC may be a key component of human intelligence. (C) 2005 Wiley-Liss, Inc.