943 resultados para Mathematics, Interdisciplinary Applications
Resumo:
Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In the assignment game of Shapley and Shubik [Shapley, L.S., Shubik, M., 1972. The assignment game. I. The core, International journal of Game Theory 1, 11-130] agents are allowed to form one partnership at most. That paper proves that, in the context of firms and workers, given two stable payoffs for the firms there is a stable payoff which gives each firm the larger of the two amounts and also one which gives each of them the smaller amount. Analogous result applies to the workers. Sotomayor [Sotomayor, M., 1992. The multiple partners game. In: Majumdar, M. (Ed.), Dynamics and Equilibrium: Essays in Honor to D. Gale. Mcmillian, pp. 322-336] extends this analysis to the case where both types of agents may form more than one partnership and an agent`s payoff is multi-dimensional. Instead, this note concentrates in the total payoff of the agents. It is then proved the rather unexpected result that again the maximum of any pair of stable payoffs for the firms is stable but the minimum need not be, even if we restrict the multiplicity of partnerships to one of the sides. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Stability of matchings was proved to be a new cooperative equilibrium concept in Sotomayor (Dynamics and equilibrium: essays in honor to D. Gale, 1992). That paper introduces the innovation of treating as multi-dimensional the payoff of a player with a quota greater than one. This is done for the many-to-many matching model with additively separable utilities, for which the stability concept is defined. It is then proved, via linear programming, that the set of stable outcomes is nonempty and it may be strictly bigger than the set of dual solutions and strictly smaller than the core. The present paper defines a general concept of stability and shows that this concept is a natural solution concept, stronger than the core concept, for a much more general coalitional game than a matching game. Instead of mutual agreements inside partnerships, the players are allowed to make collective agreements inside coalitions of any size and to distribute his labor among them. A collective agreement determines the level of labor at which the coalition operates and the division, among its members, of the income generated by the coalition. An allocation specifies a set of collective agreements for each player.
Resumo:
In a decentralized setting the game-theoretical predictions are that only strong blockings are allowed to rupture the structure of a matching. This paper argues that, under indifferences, also weak blockings should be considered when these blockings come from the grand coalition. This solution concept requires stability plus Pareto optimality. A characterization of the set of Pareto-stable matchings for the roommate and the marriage models is provided in terms of individually rational matchings whose blocking pairs, if any, are formed with unmatched agents. These matchings always exist and give an economic intuition on how blocking can be done by non-trading agents, so that the transactions need not be undone as agents reach the set of stable matchings. Some properties of the Pareto-stable matchings shared by the Marriage and Roommate models are obtained.
Resumo:
Starting with an initial price vector, prices are adjusted in order to eliminate the excess demand and at the same time to keep the transfers to the sellers as low as possible. In each step of the auction, to which set of sellers should those transfers be made is the key issue in the description of the algorithm. We assume additively separable utilities and introduce a novel distinction by considering multiple sellers owing multiple identical objects and multiple buyers with an exogenously defined quota, consuming more than one object but at most one unit of a seller`s good and having multi-dimensional payoffs. This distinction induces a necessarily more complicated construction of the over-demanded sets than the constructions of these sets for the other assignment games. For this approach, our mechanism yields the buyer-optimal competitive equilibrium payoff, which equals the buyer-optimal stable payoff. The symmetry of the model allows to getting the seller-optimal stable payoff and the seller-optimal competitive equilibrium payoff can then be also derived.
Resumo:
A stable matching rule is used as the outcome function for the Admission game where colleges behave straightforwardly and the students` strategies are given by their preferences over the colleges. We show that the college-optimal stable matching rule implements the set of stable matchings via the Nash equilibrium (NE) concept. For any other stable matching rule the strategic behavior of the students may lead to outcomes that are not stable under the true preferences. We then introduce uncertainty about the matching selected and prove that the natural solution concept is that of NE in the strong sense. A general result shows that the random stable matching rule, as well as any stable matching rule, implements the set of stable matchings via NE in the strong sense. Precise answers are given to the strategic questions raised.
Resumo:
This paper presents a method for estimating the posterior probability density of the cointegrating rank of a multivariate error correction model. A second contribution is the careful elicitation of the prior for the cointegrating vectors derived from a prior on the cointegrating space. This prior obtains naturally from treating the cointegrating space as the parameter of interest in inference and overcomes problems previously encountered in Bayesian cointegration analysis. Using this new prior and Laplace approximation, an estimator for the posterior probability of the rank is given. The approach performs well compared with information criteria in Monte Carlo experiments. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We show the results in Chalishajar [Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space, J. Franklin Inst. 344(1) (2007) 12-21] and Chang and Chalishajar [Controllability of mixed Volterra-Fredholm type integro-differential systems in Banach space, J. Franklin Inst., doi:10.1016/j. jfranklin.2008.02.002] are only valid for ordinary differential control systems. As a result the examples provided cannot be recovered as applications of the abstract results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
We investigate how corruption affects the outcome of a first-price auction (bidding behavior, efficiency and the seller's expected revenue). The auctioneer approaches the winner to offer the possibility of a reduction in his bid in exchange for a bribe. The bribe can be a percentage of the difference between the winning and the second-highest bid or a fixed amount. We show that there exists a symmetric bidding strategy equilibrium that is monotone, i.e., higher valuation buyers bid higher. Corruption does not affect efficiency but both the auctioneer's expected bribe and the seller's expected revenue depend on the format of the bribe payments. We also find the optimal bribe scheme.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
When linear equality constraints are invariant through time they can be incorporated into estimation by restricted least squares. If, however, the constraints are time-varying, this standard methodology cannot be applied. In this paper we show how to incorporate linear time-varying constraints into the estimation of econometric models. The method involves the augmentation of the observation equation of a state-space model prior to estimation by the Kalman filter. Numerical optimisation routines are used for the estimation. A simple example drawn from demand analysis is used to illustrate the method and its application.
Resumo:
An algorithm for explicit integration of structural dynamics problems with multiple time steps is proposed that averages accelerations to obtain subcycle states at a nodal interface between regions integrated with different time steps. With integer time step ratios, the resulting subcycle updates at the interface sum to give the same effect as a central difference update over a major cycle. The algorithm is shown to have good accuracy, and stability properties in linear elastic analysis similar to those of constant velocity subcycling algorithms. The implementation of a generalised form of the algorithm with non-integer time step ratios is presented. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximated by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as ail alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models. (C) 1997 Society for Mathematical Biology.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.