873 resultados para Mass based allocation
Resumo:
Antigen design is generally driven by the need to obtain enhanced stability,efficiency and safety in vaccines.Unfortunately,the antigen modification is rarely proceeded in parallel with analytical tools development characterization.The analytical tools set up is required during steps of vaccine manufacturing pipeline,for vaccine production modifications,improvements or regulatory requirements.Despite the relevance of bioconjugate vaccines,robust and consistent analytical tools to evaluate the extent of carrier glycosylation are missing.Bioconjugation is a glycoengineering technology aimed to produce N-glycoprotein in vivo in E.coli cells,based on the PglB-dependent system by C. jejuni,applied for production of several glycoconjugate vaccines.This applicability is due to glycocompetent E. coli ability to produce site-selective glycosylated protein used,after few purification steps, as vaccines able to elicit both humoral and cell-mediate immune-response.Here, S.aureus Hla bioconjugated with CP5 was used to perform rational analytical-driven design of the glycosylation sites for the glycosylation extent quantification by Mass Spectrometry.The aim of the study was to develop a MS-based approach to quantify the glycosylation extent for in-process monitoring of bioconjugate production and for final product characterization.The three designed consensus sequences differ for a single amino-acid residue and fulfill the prerequisites for engineered bioconjugate more appropriate from an analytical perspective.We aimed to achieve an optimal MS detectability of the peptide carrying the consensus sequences,complying with the well-characterized requirements for N-glycosylation by PglB.Hla carrier isoforms,bearing these consensus sequences allowed a recovery of about 20 ng/μg of periplasmic protein glycosylated at 40%.The SRM-MS here developed was successfully applied to evaluate the differential site occupancy when carrier protein present two glycosites.The glycosylation extent in each glycosite was determined and the difference in the isoforms were influenced either by the overall source of protein produced and by the position of glycosite insertion.The analytical driven design of the bioconjugated antigen and the development of accurate,precise and robust analytical method allowed to finely characterize the vaccine.
Resumo:
We compared the indication of laparoscopy for treatment of adnexal masses based on the risk scores and tumor diameters with the indication based on gynecology-oncologists' experience. This was a prospective study of 174 women who underwent surgery for adnexal tumors (116 laparotomies, 58 laparoscopies). The surgeries begun and completed by laparoscopy, with benign pathologic diagnosis, were considered successful. Laparoscopic surgeries that required conversion to laparotomy, led to a malignant diagnosis, or facilitated cyst rupture were considered failures. Two groups were defined for laparoscopy indication: (1) absence of American College of Obstetrics and Gynecology (ACOG) guideline for referral of high-risk adnexal masses criteria (ACOG negative) associated with 3 different tumor sizes (10, 12, and 14 cm); and (2) Index of Risk of Malignancy (IRM) with cutoffs at 100, 200, and 300, associated with the same 3 tumor sizes. Both groups were compared with the indication based on the surgeon's experience to verify whether the selection based on strict rules would improve the rate of successful laparoscopy. ACOG-negative and tumors ≤10 cm and IRM with a cutoff at 300 points and tumors ≤10cm resulted in the same best performance (78% success = 38/49 laparoscopies). However, compared with the results of the gynecology-oncologists' experience, those were not statistically significant. The selection of patients with adnexal mass to laparoscopy by the use of the ACOG guideline or IRM associated with tumor diameter had similar performance as the experience of gynecology-oncologists. Both methods are reproducible and easy to apply to all women with adnexal masses and could be used by general gynecologists to select women for laparoscopic surgery; however, referral to a gynecology-oncologist is advisable when there is any doubt.
Resumo:
Investigate factors associated with the onset of diabetes in women aged more than 49 years. Cross-sectional, population-based study using self-reports with 622 women. The dependent variable was the age of occurrence of diabetes using the life table method. Cox multiple regression models were adjusted to analyse the onset of diabetes according to predictor variables. Sociodemographic, clinical and behavioural factors were evaluated. Of the 622 women interviewed, 22.7% had diabetes. The mean age at onset was 56 years. The factors associated with the age of occurrence of diabetes were self-rated health (very good, good) (coefficient=-0.792; SE of the coefficient=0.215; p=0.0001), more than two individuals living in the household (coefficient=0.656, SE of the coefficient=0.223; p=0.003), and body mass index (BMI) (kg/m(2)) at 20-30 years of age (coefficient= 0.056, SE of the coefficient=0.023; p=0.014). Self-rated health considered good or very good was associated with a higher rate of survival without diabetes. Sharing a home with two or more other people and a weight increase at 20-30 years of age was associated with the onset of type 2 diabetes.
Resumo:
Using a desorption/ionization technique, easy ambient sonic-spray ionization coupled to mass spectrometry (EASI-MS), documents related to the 2nd generation of Brazilian Real currency (R$) were screened in the positive ion mode for authenticity based on chemical profiles obtained directly from the banknote surface. Characteristic profiles were observed for authentic, seized suspect counterfeit and counterfeited homemade banknotes from inkjet and laserjet printers. The chemicals in the authentic banknotes' surface were detected via a few minor sets of ions, namely from the plasticizers bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP), most likely related to the official offset printing process, and other common quaternary ammonium cations, presenting a similar chemical profile to 1st-generation R$. The seized suspect counterfeit banknotes, however, displayed abundant diagnostic ions in the m/z 400-800 range due to the presence of oligomers. High-accuracy FT-ICR MS analysis enabled molecular formula assignment for each ion. The ions were separated by 44 m/z, which enabled their characterization as Surfynol® 4XX (S4XX, XX=40, 65, and 85), wherein increasing XX values indicate increasing amounts of ethoxylation on a backbone of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104). Sodiated triethylene glycol monobutyl ether (TBG) of m/z 229 (C10H22O4Na) was also identified in the seized counterfeit banknotes via EASI(+) FT-ICR MS. Surfynol® and TBG are constituents of inks used for inkjet printing.
Resumo:
Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research.
Resumo:
The sustainability of intensive swine production demands alternative destinations for the generated residues. Ashes from swine rice husk-based deep bedding were tested as a mineral addition for cement mortars. The ashes were obtained at 400 to 600ºC, ground and sieved through a 325 mesh sieve (# 0.045 mm). The characterization of the ashes included the determination of the index of pozzolanic activity with lime. The ashes were also tested as partial substitutes of Portland cement. The mortars were prepared using a cement:sand proportion of 1:1.5, and with water/cement ratio of 0.4. Three percentages of mass substitution of the cement were tested: 10, 20 and 30%. Mortar performances were assessed at 7 and 28 days determining their compressive strength. The chosen condition for calcinations at the laboratory scale was related to the maximum temperature of 600ºC since the resulting ashes contained vitreous materials and presented satisfactory values for the pozzolanic index under analysis. The pozzolanic activity indicated promising results for ashes produced at 600ºC as a replacement of up to 30% in cement masses.
Resumo:
Context. Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims. We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods. We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (R(lambda) = 1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results. Based on an accurate trigonometric distance (17.5 +/- 0.2 pc) determination, we infer a total dynamical mass of 220 +/- 21 M(Jup) for the system. From the complete set of spectra, we find an effective temperature T(eff) = 2900(-200)(+200) K for TWA22A and T(eff) = 2900(-100)(+200) for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 +/- 1 spectral type for both components, we find luminosities of log(L/L(circle dot)) = -2.11 +/- 0.13 dex and log(L/L(circle dot)) = -2.30 +/- 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary.
Resumo:
A method for isotopic determination of silicon by mass spectrometry in plants and soils labeled with Si-30 is reported. The development of this method is for use with studies involving the physiological process of absorption, transport, and redistribution of Si in the soil-plant system by use of the stable isotope Si-30 as a tracer. The procedure leads to SiF4 formation, and the isotopic determination of Si was based on the measurements of the (SiF3+)-Si-28, (SiF3+)-Si-29, and (SiF3+)-Si-30 signals. Relative standard deviation of Si-30 abundance measurements (n = 6) were lower than 0.1%, and the detection limit was 0.5 mg Si (dry mass).
Resumo:
In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.
Resumo:
The productivity associated with commonly available disassembly methods today seldomly makes disassembly the preferred end-of-life solution for massive take back product streams. Systematic reuse of parts or components, or recycling of pure material fractions are often not achievable in an economically sustainable way. In this paper a case-based review of current disassembly practices is used to analyse the factors influencing disassembly feasibility. Data mining techniques were used to identify major factors influencing the profitability of disassembly operations. Case characteristics such as involvement of the product manufacturer in the end-of-life treatment and continuous ownership are some of the important dimensions. Economic models demonstrate that the efficiency of disassembly operations should be increased an order of magnitude to assure the competitiveness of ecologically preferred, disassembly oriented end-of-life scenarios for large waste of electric and electronic equipment (WEEE) streams. Technological means available to increase the productivity of the disassembly operations are summarized. Automated disassembly techniques can contribute to the robustness of the process, but do not allow to overcome the efficiency gap if not combined with appropriate product design measures. Innovative, reversible joints, collectively activated by external trigger signals, form a promising approach to low cost, mass disassembly in this context. A short overview of the state-of-the-art in the development of such self-disassembling joints is included. (c) 2008 CIRP.
Resumo:
The central issue for pillar design in underground coal mining is the in situ uniaxial compressive strength (sigma (cm)). The paper proposes a new method for estimating in situ uniaxial compressive strength in coal seams based on laboratory strength and P wave propagation velocity. It describes the collection of samples in the Bonito coal seam, Fontanella Mine, southern Brazil, the techniques used for the structural mapping of the coal seam and determination of seismic wave propagation velocity as well as the laboratory procedures used to determine the strength and ultrasonic wave velocity. The results obtained using the new methodology are compared with those from seven other techniques for estimating in situ rock mass uniaxial compressive strength.
Resumo:
An updated flow pattern map was developed for CO2 on the basis of the previous Cheng-Ribatski-Wojtan-Thome CO2 flow pattern map [1,2] to extend the flow pattern map to a wider range of conditions. A new annular flow to dryout transition (A-D) and a new dryout to mist flow transition (D-M) were proposed here. In addition, a bubbly flow region which generally occurs at high mass velocities and low vapor qualities was added to the updated flow pattern map. The updated flow pattern map is applicable to a much wider range of conditions: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to +25 degrees C (reduced pressures from 0.21 to 0.87). The updated flow pattern map was compared to independent experimental data of flow patterns for CO2 in the literature and it predicts the flow patterns well. Then, a database of CO2 two-phase flow pressure drop results from the literature was set up and the database was compared to the leading empirical pressure drop models: the correlations by Chisholm [3], Friedel [4], Gronnerud [5] and Muller-Steinhagen and Heck [6], a modified Chisholm correlation by Yoon et al. [7] and the flow pattern based model of Moreno Quiben and Thome [8-10]. None of these models was able to predict the CO2 pressure drop data well. Therefore, a new flow pattern based phenomenological model of two-phase flow frictional pressure drop for CO2 was developed by modifying the model of Moreno Quiben and Thome using the updated flow pattern map in this study and it predicts the CO2 pressure drop database quite well overall. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Corresponding to the updated flow pattern map presented in Part I of this study, an updated general flow pattern based flow boiling heat transfer model was developed for CO2 using the Cheng-Ribatski-Wojtan-Thome [L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, Int. J. Heat Mass Transfer 49 (2006) 4082-4094; L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, Erratum to: ""New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes"" [Heat Mass Transfer 49 (21-22) (2006) 4082-4094], Int. J. Heat Mass Transfer 50 (2007) 391] flow boiling heat transfer model as the starting basis. The flow boiling heat transfer correlation in the dryout region was updated. In addition, a new mist flow heat transfer correlation for CO2 was developed based on the CO2 data and a heat transfer method for bubbly flow was proposed for completeness sake. The updated general flow boiling heat transfer model for CO2 covers all flow regimes and is applicable to a wider range of conditions for horizontal tubes: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to 25 degrees C (reduced pressures from 0.21 to 0.87). The updated general flow boiling heat transfer model was compared to a new experimental database which contains 1124 data points (790 more than that in the previous model [Cheng et al., 2006, 2007]) in this study. Good agreement between the predicted and experimental data was found in general with 71.4% of the entire database and 83.2% of the database without the dryout and mist flow data predicted within +/-30%. However, the predictions for the dryout and mist flow regions were less satisfactory due to the limited number of data points, the higher inaccuracy in such data, scatter in some data sets ranging up to 40%, significant discrepancies from one experimental study to another and the difficulties associated with predicting the inception and completion of dryout around the perimeter of the horizontal tubes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Paraquat is a broad-spectrum contact herbicide that has been encountered worldwide in several cases of accidental, homicidal, and suicidal poisonings. The pulmonary toxicity of this compound is related to the depletion of NADPH in the pneumocytes, which is continuously consumed by the reduction/oxidation of paraquat and reductase enzyme systems in the presence of O(2) (redox cycling). Based on this mechanism, an enzymatic-spectrophotometric method was developed for the determination of paraquat in urine samples. The velocity of NADPH consumption was monitored at 340 nm, every 10 s during 15 min. The velocity of NADPH oxidation correlated with the paraquat levels found in samples. The enzymatic-spectrophotometric method showed to be sensitive, making possible the detection of paraquat in urine samples at concentrations as low as 0.05 mg/L.
Resumo:
Sibutramine hydrochloride monohydrate, chemically 1-(4-chlorophenyl)-N,N-dimethyl-alpha-(2-methylpropyl) hydrochloride monohydrate (SB center dot HCl center dot H2O), was approved by the U.S. Food and Drug Administration for the treatment of obesity. The objective of this study was to develop, validate, and compare methods using UV-derivative spectrophotometry (UVDS) and reversed-phase high-performance liquid chromatography (HPLC) for the determination of SB center dot HCl center dot H2O in pharmaceutical drug products. The UVDS and HPLC methods were found to be rapid, precise, and accurate. Statistically, there was no significant difference between the proposed UVDS and HPLC methods. The enantiomeric separation of SB was obtained on an alpha-1 acid glycoprotein column. The R- and S-sibutramine were eluted in < 5 min with baseline separation of the chromatographic peaks (alpha = 1.9 and resolution = 1.9).