1000 resultados para Método da chance matemática


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se trata la evolución de la didáctica de la matemática en el bachillerato español entre los años 1903 y 1963, en la que se distinguen dos etapas o tendencias, y las diferentes reformas legislativas y normativas durante este período. También se hace mención de la evolución de otras disciplinas que integran la de matemáticas, como la geometría, y el perfeccionamiento de las técnicas y métodos de enseñanza.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcripción de la conferencia pronunciada por Luis A. Santaló, el 23 de junio de 1965, en la Sociedad Científica Argentina, sobre el concepto de matemática moderna y su evolución a lo largo de la historia, su papel o influencia en el estilo de la investigación, el éxito de su estudio en la enseñanza superior, y el intento de introducirla en la enseñanza secundaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explicación y demostración del concepto de máximo común divisor, basado en la teoría de los ideales del anillo de los números enteros.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estudio sobre la axiomática de las matemáticas. Se señala que en ocasiones se contraponen las exigencias del desarrollo científico y de la didáctica, por lo que se ha sugerido que hay que buscar un equilibrio. En la concepción moderna de la ciencia motemática domina el método axiomático. Para dar una idea precisa del mismo, es necesario elaborar construcciones axiomáticas sencillas, adaptadas a los distintos niveles de nuestros alumnos. La axiomática de la geometría elemental presento dos niveles bien diferenciados que corresponden a los dos grados de la enseñanza medio generalizados en todos los países, aunque con distintos nombres. Entre nosotros Bachillerato elemental y superior. En el nivel más elemental nuestra axiomática debe basarse en las propiedades deducidas directamente de la ideo de cuerpo rígido, mediante el empleo de calcos, plantillas, cuerda utilizada como compás, etc. Con el estudio se pretende en definitiva, dar un esbozo de una posible axiomática de la Geometría, sobre todo en lo que especta al nivel del Bachillerato Superior. Se traza una panorámica histórica de la cuestión, con los principales antecedentes y se plantean una serie de problemas, y ejercicios y demostraciones matemáticas para corroborar hipótesis. Se hace especial mención a la geometría hiperbólica y a la geometría del espacio de siete puntos, aspecto con el que se concluye.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discurso del profesor Pedro Puig Adam en la XXVI Semana Pedagógica de la Federación de Amigos de la Enseñanza, sobre la necesidad de colaboración entre la enseñanza oficial y la privada, para la mejora de los métodos pedagógicos y la educación en general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se reproduce el texto íntegro de la charla radiofónica de Radio Huelva con don Francisco Marcos de Lanuza, Jefe Provincial del Servicio y Catedrático de Matemáticas del Instituto 'La Rábida', donde se expone la situación de la Didáctica de la Matemática, se aborda la necesidad de colaboración entre todo el Profesorado de Enseñanza Media para la mejora en los métodos de enseñanza de la Matemática y, por último, se desarrollan algunas experiencias sobre el perfeccionamiento de la Didáctica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dentro del marco de las charlas sobre Didáctica de la matemática en Bachillerato Elemental organizado por el Seminario de Didáctica de Matemáticas de la Universidad de Granada, dirigido a profesores de Enseñanza Media, se recoge la charla ofrecida por el Catedrático de Matemáticas del Instituo 'P. Suárez' de Granada, Sr. Marcos, sobre el material didáctico en la Geometría. Explica la importancia de enseñar al alumno a razonar a pensar y a descubrir por sí mismo y no simplemente a memorizar. De este modo, pidiendo a los alumnos que construyan una regla de un solo borde, conseguirán finalmente poder llegar a sumar y restar ángulos y segmentos utilizando un transportador. Solicitando a los alumnos la construcción de triángulos iguales, descubrirán las características y casos de igualdad de los triángulos. Otro instrumento de valor pedagógico es el cartabón, al que uniéndole un segundo, se convierte en un triángulo equilátero. Y, por último, la escuadra, servirá para explicar las características del triángulo rectángulo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se aborda la tarea de mejorar los métodos de formación del niño español. En concreto, se trata la enseñanza de la Matemática tradicional y sus consecuencias. Se efectúa un balance de los progresos que en materia de programa y método se han realizado. Se destaca la necesidad de una didáctica activa y heurística, con el fin de que el alumno elabore por sí mismo los conceptos y conocimientos que tenga que adquirir. Se citan algunos ejemplos diversos de iniciación heurística y, por ultimo, se ofrece un análisis de las objeciones más frecuentes que se han formulado: lentitud del procedimiento, falta de homogeneidad de la clase, el elevado número de alumnos en las clases, y la obsesión de los exámenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se describen y analizan los contenidos en la enseñanza de las matemáticas en la escuela primaria: observación y vocabulario; elementos de la forma; la magnitud; la cantidad; la cantidad tomada como unidad; concepto de número en el niño; el ordinal y el cardinal , y se hace un bosquejo de su metodología.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explica con ejemplos cómo las matemáticas pueden enseñarse de una manera lúdica. La estrategia intelectual que se maneja es la de la asociación. Consiste el juego en que el niño asocie distintos números a distintas imágenes, con el fin de mejorar su capacidad mnemotécnica, su creatividad y su visión lúdica del número.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se dan sugerencias sobre cómo preparar dos temas de matemáticas para los cursos de séptimo y octavo de primaria, de acuerdo con los nuevos principios didácticos de la matemática, que dan prioridad a la actividad reflexiva o manual ante una situación problemática.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se explica la multiplicación según la teoría de los conjuntos, pues en la matemática moderna, también, es una de las operaciones fundamentales. Asimismo, se describen los diversos tipos de material didáctico utilizado y, se reseñan las experiencias realizadas con la moderna estructura de la matemática en escuelas y centros de colaboración pedagógica de la provincia de Palencia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comprobar si los conceptos relativos a la Teoría de conjuntos, figuras geométricas y ángulos se adquieren realmente o son sólo generalizaciones que conservan aspectos perceptuales. Observar si los niños son capaces de aplicar estas nociones a la realidad. El trabajo asume que la mejora de la enseñanza de las Matemáticas supone un conocimiento de cómo se construyen las nociones en relación con las situaciones en que se presentan. Propone nuevas modificaciones y criterios didácticos para la enseñanza de las Matemáticas. Nociones de la Teoría de conjuntos: 60 ss. entre 5 y 12 años pertenecientes a colegio publico (clase media) y otro privado (clase media-alta y media). Se seleccionaron 5 sujetos por cada nivel de edad. Comprensión de figuras geométricas: 40 ss. de primero a octavo de EGB (cinco por curso) pertenecientes a un colegio nacional de Madrid. Comprensión del concepto de ángulo: 30 ss. de tercero a octavo de EGB (5 sujetos por curso) pertenecientes a un colegio nacional de las afueras de Madrid. Aplicación de nociones matemáticas a problema de engranajes: 42 ss. entre 7 y 12 años de los cursos segundo y sexto de EGB (7 sujetos por nivel de edad) pertenecientes a un colegio nacional de Madrid. Cuatro diseños que evalúan comprensión de nociones en ámbitos diferentes. Siguiendo el método clínico en las que se evalúan dificultades de comprensión, aplicación a situaciones reales, ejemplos y utilidad percibida de diferentes conceptos (estos aspectos funcionan como variable dependiente). La variable independiente es la edad o el curso, según casos. Entrevistas individuales, fueron grabadas en audio y codificadas simultáneamente por dos observadores. Los datos fueron distribuidos en niveles según el grado de comprensión que denotaban los protocolos. Diseños: I, Teoria de conjuntos: 5-sujetos-x6-niveles de edad- x2-centros-. Intrasujeto. II, figuras geométricas: 5-sujetos-x8-cursos-. Intrasujeto. III, ángulos: 5-sujetos-x6-cursos-. Intrasujeto. IV, engranajes: 7-sujetos-x6-cursos-. Intrasujeto. Nociones sobre conjuntos: no se asimilan hasta cuarto de EGB, y a partir de aquí sólo de forma parcial. Frecuente que el niño confunda la noción de conjunto con su representación gráfica. Tampoco existe relación con las restantes nociones de Matemáticas. Figuras geométricas: se identifican como tales sólo en determinadas posiciones. No hay una comprensión de los conceptos, sólo una asociación entre una palabra y una figura determinada. El concepto de ángulo se asocia a longitud de los lados. Engranajes: se observan grandes dificultades de comprensión de desplazamientos y direcciones. No son capaces de relacionar nociones matemáticas, que ya poseen, con este problema para solucionarlo. La deformación a que someten los niños las enseñanzas para adaptarlas a su estructura mental ponen de manifiesto tales estructuras. Los conceptos elaborados por el niño tienen una alta dependencia de las configuraciones perceptivas y anecdóticas sin alcanzar verdadera comprensión. Se observa gran dificultad para aplicar estas nociones a problemas concretos. Recomendaciones curriculares para mejorar la enseñanza de las Matemáticas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implicaciones de la Matemática moderna en la enseñanza, en relación con el alumno y profesor. 4 Partes: I. Fines y contenidos de la enseñanza matemática actual, revisar programas anteriores, objetivos programados y relación con otras materias. II. Metodología matemática, métodos actuales y desarrollos específicos. III. Recursos y evaluación, estado de implantación de la nueva Matemática, preparación del profesorado y papel del seminario didáctico. IV. Tratamiento estadístico de datos. Resultados sobre la adquisición de los objetivos de la taxonomía NLSMA, influencia de diversas variables (factores de éxito, Standford) en la dificultad de los problemas y estudio de la conducta del profesor, por el método Amidon-Flanders. Para modelo Standford, 5 centros de BUP (400 alumnos) más otra de 300 universitarios. Taxonomía NLSMA, varios centros (470 alumnos). Método Flanders: 6 profesores. Taxonomía NLSMA: cuestionario, bloques con número desigual. Modelo Standford: variables independientes: tipo de problema, n pasos en la resolución, inclusión de información superflua y existencia de frase clave. Diseño factorial 4x2x2x2. Evaluación de profesorado y seminarios: encuesta por correo. Criterios muestrales: tamaño del centro, zona geográfica. Variables controladas: centro, profesor y provincia. Método Flanders, grabación de las clases. Sistema de codificación de conductas e interacciones modificado con 10 categorías de ocurrencia. Sobre textos escolares concluyen que su extensión e interpretación es diversa, no plantean objetivos de conducta y adolecen de errores conceptuales. De la encuesta al profesorado extrae que casi todos son matemáticos, con poca formación adiccional. La mitad prefieren el sistema tradicional de enseñanza y aceptan la matemática moderna. Respecto a los seminarios, pobre funcionamiento. No esta extendida la evaluación previa del nivel del alumno y los programas no suelen incluir procedimientos de rectificación. El método NLSMA, útil para analizar las adquisiciones progresivas obteniendose agrupaciones características según niveles. La influencia de variables Standford es significativa y depende del nivel académico. La observación del profesor revela patrones de comportamiento característicos. Método válido para estudiar la interacción profesor-alumno. Ofrece programación completa y cuestionarios de evaluación para diversas áreas de Matemáticas. Resalta la importancia del seminario para organizar y evaluar. Relación maestro-alumno-materia como factor decisivo en el aprendizaje.